scholarly journals Effect of Sterilization on the Properties of a Bioactive Hybrid Coating Containing Hydroxyapatite

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
E. K. K. Baldin ◽  
C. F. Malfatti ◽  
V. Rodói ◽  
R. N. Brandalise

The objective of this study was to evaluate the influence of sterilization on a hybrid coating obtained from a sol composed of alkoxysilane tetraethoxysilane (TEOS) and organoalkoxysilane methyltriethoxysilane (MTES) containing 10% (mass) of hydroxyapatite particles. The coating was obtained by dip coating, by applying two layers (protective/bioactive), which were cured at different temperatures (450°C and 60°C). The effects of sterilization on the superficial, electrochemical, bioactive, and mechanical properties of the coating were evaluated by performing different sterilization processes, namely, steam autoclave, hydrogen peroxide plasma, and ethylene oxide. Subsequently, the coating was characterized by using scanning electron microscopy (SEM/FEG), and FTIR measurements were performed to characterize the chemical structure. The bioactivity and degradability of the coating were analyzed by mass variation after immersion in SBF and X-ray diffraction (XRD) analysis. The electrochemical behavior was assessed by open circuit potential (OCP) and potentiodynamic polarization curves and the mechanical behavior by wear resistance. Results showed that all sterilization processes caused significant morphological changes in the hybrid coating. The autoclaved sample presented the highest structural chemical changes, and, consequently, the highest degradability, even though it had a superior bioactive behavior in relation to the other samples. In addition, the sterilization processes influenced the electrochemical behavior of the hybrid coating and altered the mechanical resistance to abrasion, thus presenting lower wear performance in relation to the nonsterilized sample.

2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2019 ◽  
Vol 25 (4) ◽  
pp. 365-368
Author(s):  
Pranas USINSKAS ◽  
Živilė STANKEVIČIŪTĖ ◽  
Gediminas NIAURA ◽  
Justinas ČEPONKUS ◽  
Aivaras KAREIVA

In this study we demonstrate, that sol–gel route is suitable to quicker obtain calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp) coatings on crystalline Si substrate by modified dip-coating technique. The substrate was dip-coated by precursor and dried for 10 minutes at 200 °C with following cooling using the heating block for 110 min and annealing at 650 °C. Ethylendiamintetraacetic acid and 1,2-ethandiol, and triethanolamine and polyvinyl alcohol were used as complexing agents and as gel network forming agents, respectively. The obtained coatings were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), FTIR spectroscopy and contact angle measurements (CAM).


2018 ◽  
Vol 30 (8) ◽  
pp. 918-926 ◽  
Author(s):  
Rakhi Nangia ◽  
Neeraj K Shukla ◽  
Ambika Sharma

In this work, polymer blend films based on polyvinyl alcohol (PVA)/poly(ethylene glycol) (PEG) were prepared by solution casting technique. X-ray diffraction (XRD) analysis was performed to investigate the structural details of the polymer blend. XRD pattern confirms the polycrystalline nature of the films. Sandwich structures of the type Ag-PVA/PEG-Ag were formed to study the dielectric and conduction properties in the frequency range 300 Hz–3 MHz and at different temperatures varying from 298 K to 420 K. Experimental results show that both dielectric constant ( ε′) and dielectric loss ( ε″) values were strong functions of frequency and temperature. The AC conductivity ( σAC) was found to obey the power law Aωs and correlated barrier hopping as the conduction mechanism. The imaginary part of electric modulus shows peak shifting corresponding to relaxation mechanisms. Electric modulus study was also found to support the dielectric permittivity data.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1129
Author(s):  
Luyara de Almeida Cavalcante ◽  
Laís Sibaldo Ribeiro ◽  
Mitsuo Lopes Takeno ◽  
Pedro Tupa Pandava Aum ◽  
Yanne Katiussy Pereira Gurgel Aum ◽  
...  

The present work demonstrates the production of chlorapatite (ClAp) through thermal decomposition of chemically treated fish scales, originating from an Amazon fish species (Arapaima gigas). The scales were treated with hydrochloric acid (HCl) solution for deproteinization. Afterwards, the solution was neutralized by sodium hydroxide (NaOH) treatment to obtain an apatite-rich slurry. The heat treatment was carried out at different temperatures including 600 °C, 800 °C, and 1000 °C. The powders obtained were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The XRD analysis and FTIR spectra confirmed the incorporation of chlorine into the apatite structure. The FTIR results showed absorption bands relative to the OH–, PO43− functional groups which are a characteristic of chlorapatite. Moreover, the intensity of the OH–Cl elongation could be observed. Chlorapatite Ca5(PO4)3Cl, NaCl, and NaCaPO4 phases were identified, achieving up to 87.4 wt% for ClAp. The SEM observations show that with increasing temperature, the ClAp obtained consists of slightly larger, more crystalline grains. Furthermore, the grains ranged in size, between 1-5 μm and ClAp1000 sample recorded crystallinity of 84.27%. ClAp and NaCaPO4 can be used in electronics as phosphor materials due to their luminescence and biomedical applications.


2019 ◽  
Vol 22 ◽  
pp. 39-47 ◽  
Author(s):  
Fadhéla Otmane ◽  
Salim Triaa ◽  
A. Maali ◽  
B. Rekioua

This study reports on the elaboration and characterization of bulk nanocomposites samples obtained by dispersion of metallic powders at the nanoscale as reinforcements in a polymer matrix. Elemental Fe powders were successfully nanostructured via high-energy ball milling. Structural characterization of the produced powders was conducted using X-Ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM). The Halder-Wagner approach was adopted to determine the powder’s average grain size, internal strain, lattice parameters and the mixing factors. Structural parameters evolution and morphological changes according to milling progression are discussed. Bulk nanocomposites samples were shaped in a home moulder by dispersion of coarse Fe and nanostructured Fe powders in a continuous matrix of commercial epoxy resin. The obtained bulk samples match the metallic X-band wave-guide WR-90 dimensions used for electromagnetic characterization. The two-port Sij scattering parameters were measured via an Agilent 8791 ES network analyzer. The measured scattering parameters served to calculate the loss factor of samples and to extract the dielectric permittivity via the Nicholson-Ross-Weir conversion. Spectra evolution of the scattering parameters, the loss factor and the dielectric constant for epoxy resin with coarse Fe and nanostructured Fe reinforcements are commented.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7831
Author(s):  
Paloma Recio ◽  
Carmen Alcázar ◽  
Rodrigo Moreno

In this paper, the interface between yttria stabilized zirconia (Y0.08Zr0.92O2, YSZ) electrolyte and Sr-doped lanthanum manganite (La0.80Sr0.20MnO3, LSM) cathode for solid oxide fuel cells (SOFCs) is studied. For such a purpose, the combination of a suitable synthesis route for obtaining fine powders and simple aqueous colloidal shaping routes is proposed. The synthesis of nanosized particles of La0.80Sr0.20MnO3 by a citrate route and their full characterization, including the colloidal stability and the densification and phase development determined by X-ray diffraction and electron microscopy at different temperatures, is reported. In a second step, YSZ tapes were obtained by aqueous tape casting and used as substrates for the preparation of LSM coatings by dip-coating using aqueous slurries. YSZ tapes were used either in the green state or after a pre-sintering treatment. Co-sintering at 1350 °C led to a sharp interface with excellent adhesion, also achieved when coating pre-sintered tapes. In both cases, the substrates are dense and the coatings are porous, with thicknesses of 85 and 60 μm for green and pre-sintered tapes, respectively. No diffusion of Zr and Y occurs at the LSM layer, but some diffusion of La and Mn towards the YSZ layer takes place.


2017 ◽  
Vol 64 (5) ◽  
pp. 508-514 ◽  
Author(s):  
M. Adam Khan ◽  
S. Sundarrajan ◽  
S. Natarajan

Purpose The aim of this paper is to study the hot corrosion behaviour of super 304H stainless steel for marine applications. Design/methodology/approach The investigation was carried out with three different combinations of salt mixture (Na2SO4, NaCl and V2O5) at two different temperatures (800 and 900°C). Findings The spalling and growth of oxide layer was observed more with the presence of V2O5 in the salt mixture at 900°C during experimentation than what was observed in 800°C. The mass change per unit area is calculated to study the corrosion kinetics and also the influence of salt mixture. Further, the samples are analysed through materials characterisation techniques using optical image, scanning electron microscope (SEM), energy dispersive X-ray (EDAX) and X-ray diffraction (XRD) analysis. The presence of V2O5 in the salt mixture was the most important influencing species for accelerating hot corrosion. Originality/value SEM, EDAX and XRD analysis confirmed the formation of Fe2O3 and Cr2O3 at 900°C showing contribution in corrosion protection.


2018 ◽  
Vol 276 ◽  
pp. 60-65
Author(s):  
Marcela Fridrichová ◽  
Dominik Gazdič ◽  
Jana Mokrá ◽  
Karel Dvořák

The stability of ettringite as high-watery mineral is highly dependent on the ambient temperature. Under standard laboratory conditions, onset of decomposition of this phase occurs at temperature of 80°C already and the theoretical temperature of the complete decomposition of ettringite is 180°C. Ettringite decomposition can occur at significantly different temperatures under humidity conditions other than the laboratory ones. Within the work verification of the possibility of synthetic preparation of ettringite by direct addition of aluminum sulfate, Al2(SO4)3·18H2O, and calcium hydroxide, Ca (OH)2, as an alternative method to the yeelimite hydration procedure was carried out. The stability of the resulting systems was examined in two different environments, namely in a laboratory environment and the environment of saturated water vapour. The phase composition of the samples was determined by X-ray diffraction (XRD) analysis, thermal analysis and scanning electron microscopy (SEM).


2015 ◽  
Vol 05 (01) ◽  
pp. 1550007 ◽  
Author(s):  
M. Saidi ◽  
A. Chaouchi ◽  
S. D'Astorg ◽  
M. Rguiti ◽  
C. Courtois

Polycrystalline of [( Na 0.535 K 0.480)0.966 Li 0.058] (Nb 0.90 Ta 0.10) O 3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (R min ), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.


2021 ◽  
Vol 18 (3) ◽  
pp. 318-331
Author(s):  
Asanthi Ireshika Rukshani Wickramasuriya ◽  
Ruwan Chandima Wickramasinghe Arachchige ◽  
Iresha Renuke Menike Kottegoda

Hardness in drinking water is a major problem in domestic usage. It is important to use drinking water within the tolerance limits of hardness. Clay samples obtained from two different areas in Sri Lanka were analysed, modified, and optimized with a view to suppress the hardness in drinking water. Characterization of clay was carried out using XRD (X-ray diffraction spectroscopy), FTIR (Fourier transformed infrared spectroscopy), and SEM (Scanning electron microscope). Variation of the adsorption capacity of clay was analysed at different firing temperatures of the clay samples. XRD analysis revealed that both clay types are consisting of Kaolinite as the main constituent. The hardness adsorption efficiency and the retention of hardness adsorption in prolonged cycles has been observed when the clay is heated at different temperatures. In addition, the water hardness adsorption efficiency was enhanced by the cationic modification using sodium chloride. The results further reveals that the Freundlich isotherm is best fit for Ca2+ adsorption on both Biyagama and Deniyaya clay whereas that for the Mg2+ adsorption is Langmuir isotherm. The present study is useful to develop low-cost clay-based materials to minimize water hardness.


Sign in / Sign up

Export Citation Format

Share Document