scholarly journals Analyses and Encryption Implementation of a New Chaotic System Based on Semitensor Product

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Rui Wang ◽  
Peifeng Du ◽  
Wenqi Zhong ◽  
Han Han ◽  
Hui Sun

Semitensor product theory can deal with matrices multiplication with different numbers of columns and rows. Therefore, a new chaotic system for different high dimensions can be created by employing a semitensor product of chaotic systems with different dimensions, so that more channels can be selected for encryption. This paper proposes a new chaotic system generated by semitensor product applied on Qi and Lorenz systems. The corresponding dynamic characteristics of the new system are discussed in this paper to verify the existences of different attractors. The detailed algorithms are illustrated in this paper. The FPGA hardware encryption implementations are also elaborated and conducted. Correspondingly, the randomness tests are realized as well, and compared to that of the individual Qi system and Lorenz system, the proposed system in this paper owns the better randomness characteristic. The statistical analyses and differential and correlation analyses are also discussed.

2018 ◽  
Vol 7 (3) ◽  
pp. 1931 ◽  
Author(s):  
Sivaperumal Sampath ◽  
Sundarapandian Vaidyanathan ◽  
Aceng Sambas ◽  
Mohamad Afendee ◽  
Mustafa Mamat ◽  
...  

This paper reports the finding a new four-scroll chaotic system with four nonlinearities. The proposed system is a new addition to existing multi-scroll chaotic systems in the literature. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system via MATLAB are unveiled. As the new four-scroll chaotic system is shown to have three unstable equilibrium points, it has a self-excited chaotic attractor. An electronic circuit simulation of the new four-scroll chaotic system is shown using MultiSIM to check the feasibility of the four-scroll chaotic model.


2017 ◽  
Vol 27 (10) ◽  
pp. 1750152 ◽  
Author(s):  
Zhen Wang ◽  
Zhe Xu ◽  
Ezzedine Mliki ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Designing chaotic systems with specific features is a very interesting topic in nonlinear dynamics. However most of the efforts in this area are about features in the structure of the equations, while there is less attention to features in the topology of strange attractors. In this paper, we introduce a new chaotic system with unique property. It has been designed in such a way that a specific property has been injected to it. This new system is analyzed carefully and its real circuit implementation is presented.


2012 ◽  
Vol 542-543 ◽  
pp. 1042-1046 ◽  
Author(s):  
Xin Deng

In this paper, the first new chaotic system is gained by anti-controlling Chen system,which belongs to the general Lorenz system; also, the second new chaotic system is gained by anti-controlling the first new chaotic system, which belongs to the general Lü system. Moreover,some basic dynamical properties of two new chaotic systems are studied, either numerically or analytically. The obtained results show clearly that Chen chaotic system and two new chaotic systems also can form another Lorenz system family and deserve further detailed investigation.


2021 ◽  
Author(s):  
Ryam Salam Abdulaali ◽  
Raied K. Jamal ◽  
Salam K. Mousa

Abstract It is proposed in this paper that a new chaotic system may be formed by combining two distinct chaotic systems, such as the Rossler system and the Chua system, in which the x dynamic of the Rossler system is linked with the z dynamic of the Chua system, results in a new chaotic system. Some of the basic dynamic behavior is explored and examined for new system by using the Matlab program. They noticed that it was a difference in the time series of the Chua system and this in turn led to a difference in the attractor, as the attractor of the Chua system changed from double scroll to single scroll and this led to change of the bandwidth of the Chua system, meaning that the Rӧssler system affected the Chua system, which led to an increase in the possibility of using this system in secret communications.


Author(s):  
Aceng Sambas ◽  
Sundarapandian Vaidyanathan ◽  
Mustafa Mamat ◽  
Muhammad Afendee Mohamed ◽  
Mada Sanjaya WS

This paper reports the finding a new chaotic system with a pear-shaped equilibrium curve and makes a valuable addition to existing chaotic systems with infinite equilibrium points in the literature. The new chaotic system has a total of five nonlinearities. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system are unveiled. An electronic circuit simulation of the new chaotic system with pear-shaped equilibrium curve is shown using Multisim to check the model feasibility.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


2007 ◽  
Vol 17 (06) ◽  
pp. 2021-2031 ◽  
Author(s):  
H. K. LAM ◽  
F. H. F. LEUNG

This paper proposes a linear sampled-data controller for the stabilization of chaotic system. The system stabilization and performance issues will be investigated. Stability conditions will be derived based on the Lyapunov approach. The findings of the maximum sampling period and the feedback gain of controller, and the optimization of system performance will be formulated as a generalized eigenvalue minimization problem. Based on the analysis result, a stable linear sampled-data controller can be realized systematically to stabilize a chaotic system. An example of stabilizing a Lorenz system will be given to illustrate the design procedure and effectiveness of the proposed approach.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Haipeng Su ◽  
Runzi Luo ◽  
Ling Xu ◽  
Meichun Huang ◽  
Jiaojiao Fu

This paper studies the control of a class of 3D chaotic systems with uncertain parameters and external disturbances. A new method which is referred as the analytical solution approach is firstly proposed for constructing Lyapunov function. Then, for suppressing the trajectories of the 3D chaotic system to its equilibrium point 00,0,0, a novel fast convergence controller containing parameter λ which determines the convergence rate of the system is presented. By using the designed Lyapunov function, the stability of the closed-loop system is proved via the Lyapunov stability theorem. Computer simulations are employed to a new chaotic system to illustrate the effectiveness of the theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ying Li ◽  
Xiaozhu Xia ◽  
Yicheng Zeng ◽  
Qinghui Hong

Chaotic systems with hidden multiscroll attractors have received much attention in recent years. However, most parts of hidden multiscroll attractors previously reported were repeated by the same type of attractor, and the composite of different types of attractors appeared rarely. In this paper, a memristor-based chaotic system, which can generate composite attractors with one up to six scrolls, is proposed. These composite attractors have different forms, similar to the Chua’s double scroll and jerk double scroll. Through theoretical analysis, we find that the new system has no fixed point; that is to say, all of the composite multiscroll attractors are hidden attractors. Additionally, some complicated dynamic behaviors including various hidden coexisting attractors, extreme multistability, and transient transition are explored. Moreover, hardware circuit using discrete components is implemented, and its experimental results supported the numerical simulations results.


2019 ◽  
Vol 9 (4) ◽  
pp. 781 ◽  
Author(s):  
Xiong Wang ◽  
Ünal Çavuşoğlu ◽  
Sezgin Kacar ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Chaotic systems without equilibrium are of interest because they are the systems with hidden attractors. A nonequilibrium system with chaos is introduced in this work. Chaotic behavior of the system is verified by phase portraits, Lyapunov exponents, and entropy. We have implemented a real electronic circuit of the system and reported experimental results. By using this new chaotic system, we have constructed S-boxes which are applied to propose a novel image encryption algorithm. In the designed encryption algorithm, three S-boxes with strong cryptographic properties are used for the sub-byte operation. Particularly, the S-box for the sub-byte process is selected randomly. In addition, performance analyses of S-boxes and security analyses of the encryption processes have been presented.


Sign in / Sign up

Export Citation Format

Share Document