scholarly journals Bearing Fault Dominant Symptom Parameters Selection Based on Canonical Discriminant Analysis and False Nearest Neighbor Using GA Filtering Signal

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shilun Zuo ◽  
Zhiqiang Liao

Symptom parameter is a popular method for bearing fault diagnosis, and it plays a crucial role in the process of building a diagnosis model. Many symptom parameters have been performed to extract signal fault features in time and frequency domains, and the improper selection of parameter will significantly influence the diagnosis result. For dealing with the problem, this paper proposes a novel dominant symptom parameters selection scheme for bearing fault diagnosis based on canonical discriminant analysis and false nearest neighbor using GA filtered signal. The original signal was filtered by a genetic algorithm (GA) at first and then mapped to the new characteristic subspace through the canonical discriminant analysis (CDA) algorithm. The map distance in the new characteristic subspace is calculated by the false nearest neighbor (FNN) method to interpret the dominance of symptom parameters. The dominant symptom parameters brought to the bearing diagnosis system can improve the diagnosis result. The effectiveness of the proposed method has been demonstrated by the diagnosis model and by comparison with other methods.

Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 359 ◽  
Author(s):  
Jianghua Ge ◽  
Guibin Yin ◽  
Yaping Wang ◽  
Di Xu ◽  
Fen Wei

To improve the accuracy of rolling-bearing fault diagnosis and solve the problem of incomplete information about the feature-evaluation method of the single-measurement model, this paper combines the advantages of various measurement models and proposes a fault-diagnosis method based on multi-measurement hybrid-feature evaluation. In this study, an original feature set was first obtained through analyzing a collected vibration signal. The feature set included time- and frequency-domain features, and also, based on the empirical-mode decomposition (EMD)-obtained time-frequency domain, energy and Lempel–Ziv complexity features. Second, a feature-evaluation framework of multiplicative hybrid models was constructed based on correlation, distance, information, and other measures. The framework was used to rank features and obtain rank weights. Then the weights were multiplied by the features to obtain a new feature set. Finally, the fault-feature set was used as the input of the category-divergence fault-diagnosis model based on kernel principal component analysis (KPCA), and the fault-diagnosis model was based on a support vector machine (SVM). The clustering effect of different fault categories was more obvious and classification accuracy was improved.


Author(s):  
Xueli An ◽  
Luoping Pan

For the unsteady characteristics of a fault vibration signal from a wind turbine rolling bearing, a bearing fault diagnosis method based on adaptive local iterative filtering and approximate entropy is proposed. The adaptive local iterative filtering method is used to decompose original vibration signals into a finite number of stationary components. The components which comprise major fault information are selected for further analysis. The approximate entropy of the selected components is calculated as a fault feature value and input to a fault classifier. The classifier is based on the nearest neighbor algorithm. The vibration signals from a spherical roller bearing on a wind turbine in its normal state, with an outer race fault, an inner race fault and a roller fault are analyzed. The results show that the proposed method can accurately and efficiently identify the fault modes present in the rolling bearings of a wind turbine.


2019 ◽  
Vol 13 (3) ◽  
pp. 5689-5702
Author(s):  
N. Fathiah Waziralilah ◽  
Aminudin Abu ◽  
M. H. Lim ◽  
Lee Kee Quen ◽  
Ahmed Elfakarany

The vast impact on machinery that is rooted by bearing degradation thus pinpointing bearing fault diagnosis as indubitably very crucial. The research is innovated to diagnose the fault in bearing by implementing deep learning approach which is Convolutional Neural Network (CNN) that has superiority over image processing and pattern recognition. A novel model comprises of Gabor Transform and CNN is proposed whereby Gabor Transform is utilized in representing the raw vibration signals into its image representation. The CNN architecture is augmented for a better accuracy of the bearing fault diagnosis model. To date, the method combination has never been deployed in establishing fault diagnosis model. Plus, the usage of Gabor Transform in mechanical area especially in bearing fault diagnosis is meagrely reported. Scant researches in mechanical diagnosis are dedicated to work on the image representation of the vibration data whereas the CNN works better when fed by images input due to its unique strength of CNN in images processing and spatial awareness. At the end of the research, it is perceived that the proposed model comprises of Gabor Transform and CNN can diagnose the bearing faults with 100% accuracy and perform better than when CNN is fed with raw signals.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sharif Uddin ◽  
Md. Rashedul Islam ◽  
Sheraz Ali Khan ◽  
Jaeyoung Kim ◽  
Jong-Myon Kim ◽  
...  

An enhancedk-nearest neighbor (k-NN) classification algorithm is presented, which uses a density based similarity measure in addition to a distance based similarity measure to improve the diagnostic performance in bearing fault diagnosis. Due to its use of distance based similarity measure alone, the classification accuracy of traditionalk-NN deteriorates in case of overlapping samples and outliers and is highly susceptible to the neighborhood size,k. This study addresses these limitations by proposing the use of both distance and density based measures of similarity between training and test samples. The proposedk-NN classifier is used to enhance the diagnostic performance of a bearing fault diagnosis scheme, which classifies different fault conditions based upon hybrid feature vectors extracted from acoustic emission (AE) signals. Experimental results demonstrate that the proposed scheme, which uses the enhancedk-NN classifier, yields better diagnostic performance and is more robust to variations in the neighborhood size,k.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 784
Author(s):  
Xianghong Tang ◽  
Qiang He ◽  
Xin Gu ◽  
Chuanjiang Li ◽  
Huan Zhang ◽  
...  

A convolutional neural network (CNN) has been used to successfully realize end-to-end bearing fault diagnosis due to its powerful feature extraction ability. However, the CNN is prone to focus on local information, ignoring the relationship between the whole and the part of the signal due to its unique structure. In addition, it extracts some fault features with poor robustness under noisy environment. A novel diagnosis model based on feature fusion and feature selection, GL-mRMR-SVM, is proposed to address this problem in this paper. First, the model combines the global features in the time-domain and frequency-domain of the raw data with the local features extracted by CNN to make full use of the signal information and overcome the weakness of traditional CNNs neglecting the overall signal. Then, the max-relevance min-redundancy (mRMR) algorithm is used to automatically extract the discriminative features from the fused features without any prior knowledge. Finally, the extracted discriminative features are input into the SVM for training and output the fault recognition results. The proposed GL-mRMR-SVM model was evaluated through experiments on bearing data of Case Western Reserve University (CWRU) and CUT-2 platform. The experimental results show that the proposed method is more effective than other intelligent diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document