scholarly journals Corrigendum to “The Effect of Rice Bran Extract on Arterial Blood Pressure, Hepatic Steatosis, and Inflammation in Mice Fed with a High-Fat Diet”

2020 ◽  
Vol 2020 ◽  
pp. 1-1
Author(s):  
Naphatsanan Duansak ◽  
Pritsana Piyabhan ◽  
Umarat Srisawat ◽  
Jarinyaporn Naowaboot ◽  
Nusiri Lerdvuthisopon ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Naphatsanan Duansak ◽  
Pritsana Piyabhan ◽  
Umarat Srisawat ◽  
Jarinyaporn Naowaboot ◽  
Nusiri Lerdvuthisopon ◽  
...  

Background. Inflammation and hypertension are primary mechanisms involving in obesity-associated adverse effects of a high-fat diet. The aim of this study was to evaluate the effects of rice bran extract (RBE) on arterial blood pressure, hepatic steatosis, inflammation, and oxidative stress in high-fat diet (HFD)-induced obese mice. Methods. Male ICR mice were divided into four groups, including a normal-diet control group, a high-fat diet (HFD) (60% kcal from fat) group, an HFD group treated with RBE (220 mg/kg/day), and an HFD group treated with 1100 mg/kg/day for eight weeks. Besides body weight and arterial blood pressure, we determined liver values of total cholesterol, triglyceride, as well as percent body fat, tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), matrix metalloprotease-9 (MMP-9), cyclooxygenase-2 (COX-2), and mRNA endothelial nitric oxide synthase (eNOS). Results. The HFD group had increased body weight, increased systolic and diastolic blood pressure, liver total cholesterol, triglyceride, NF-κB, COX-2 and MMP-9 protein levels, and decreased mRNA eNOS in the aorta. Mice of the HFD group receiving RBE had reduced diastolic blood pressure, as well as significantly decreased liver and serum TNF-α and MDA levels in the liver, and reduced NF-κB levels in both the liver and heart. Conclusions. These results demonstrate that RBE decreases diastolic blood pressure, the liver lipid droplet accumulation, liver and myocardial NF-κB, myocardial COX-2 and MMP-9 protein levels, and oxidative stress. Moreover, RBE may improve endothelial function and may alleviate adverse health effects associated with obesity including obesity-associated hypertension.


2019 ◽  
Vol 49 (4) ◽  
pp. 600-616
Author(s):  
Fatima Bensalah ◽  
Nour el Imane Harrat ◽  
Fouad Affane ◽  
Hadjera Chekkal ◽  
Myriem Lamri-Senhadji

Purpose The purpose of this study was to determine the effects of whole oat, oat bran and refined oat incorporation in a high-fat diet (HFD) on cardio-metabolic risk biomarkers in rats with type 2 diabetes mellitus (T2DM). Design/methodology/approach T2DM was induced by feeding male rats with an HFD for 10 weeks, followed by a low dose of streptozotocin. T2DM rats were then divided into four homogeneous groups. Three groups consumed an HFD containing 45 per cent (g/100 g diet) whole oat, oat bran or refined oat. The fourth untreated group (control) received the HFD. Findings The results showed that whole oat and oat bran, compared with refined oat and control, effectively reduced food intake (p < 0.007), arterial blood pressure (p = 0.0001), glycemia (p < 0.001), insulinemia (p < 0.01), glycosylated haemoglobin (p < 0.001) as well as homeostasis insulin resistance (HOMA-IR) (p < 0.001). They also improved blood lipid levels and reverse cholesterol transport by reducing serum total cholesterol (p = 0.0001), triacylglycerols (p < 0.05), very-low- (p = 0.0001) and low-density lipoproteins cholesterol contents (p < 0.02) increasing lipids (p < 0.002) and cholesterol excretion (p = 0.0001), and high-density lipoprotein cholesteryl esters (HDL2-CE) concentrations (p = 0.0001) and stimulating lecithin: cholesterol acyltransferase (LCAT) activity (p = 0.0001). Moreover, they attenuated lipid peroxidation by increasing paraoxonase-1 (PON-1) atheroprotective activity (p < 0.05). Originality/value In T2DM rats, whole oat and particularly, its bran incorporated into an HFD improves arterial blood pressure, glycemic balance and lipid metabolic pathway by reducing hypertriglyceridemia and hypercholesterolemia and increasing atheroprotective activities of LCAT and PON-1. In contrast, refined oat accentuates the risk factors associated with diabetes.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
C Charkhonpunya ◽  
S Sireeratawong ◽  
S Komindr ◽  
N Lerdvuthisopon

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
N Munkong ◽  
S Sireeratawong ◽  
A Wongnoppavich ◽  
N Lerdvuthisopon

2009 ◽  
Vol 296 (1) ◽  
pp. R20-R28 ◽  
Author(s):  
Anaya Mitra ◽  
Kristin M. Alvers ◽  
Erica M. Crump ◽  
Neil E. Rowland

Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet condition. Female offspring were weaned on either control or “junk food” diets until about 6 mo of age. Rats fed the high-fat junk food diet were hyperphagic relative to their chow-fed controls. The junk food-fed rats were significantly heavier and had greater fat pad mass than those rats maintained on chow alone. Importantly, those rats suckled by high-fat dams had heavier fat pads than those suckled by control diet dams. Fasting serum leptin and insulin levels differed as a function of the gestational, lactational, and postweaning diet histories. Rats gestated in, or suckled by high-fat dams, or maintained on the junk food diet were hyperleptinemic compared with their respective controls. Indirect blood pressure did not differ as a function of postweaning diet, but rats gestated in the high-fat dams had lower mean arterial blood pressures than those gestated in the control diet dams. The postweaning dietary history affected food-motivated behavior; junk food-fed rats earned less food pellets on fixed (FR) and progressive (PR) ratio cost schedules than chow-fed controls. In conclusion, the effects of maternal high-fat diet during gestation or lactation were mostly small and transient. The postweaning effects of junk food diet were evident on the majority of the parameters measured, including body weight, fat pad mass, serum leptin and insulin levels, and operant performance.


Author(s):  
Jiraprapa Ponglong ◽  
Laddawan Senggunprai ◽  
Panot Tungsutjarit ◽  
Ronnachai Changsri ◽  
Tunvaraporn Proongkhong ◽  
...  

Objective: Tubtim-chumphae rice is hybrid Thai rice with a red pericarp. This study was aimed to investigate the effect of Tubtim-chumphae rice bran on insulin resistance and intrahepatic fat accumulation in high-fat-high-fructose diet (HFFD) fed rats.Methods: Ethanolic extract of rice bran (ERB) was prepared using a 50% ethanol-water. Male Sprague-Dawley rats were fed HFFD (40% lard, 20% fructose) for 10 weeks, followed by concomitant administrations of distilled water or ERB at 250 or 500 mg/kg/day or pioglitazone at 10 mg/kg/day for a further 4 weeks in treated groups. Normal control rats were fed normal chow and distilled water. At the end of all treatments, fasting blood glucose (FBG), an oral glucose tolerance test (OGTT), serum insulin levels, lipid profiles, and liver fat contents were measured. Liver histological and peroxisome proliferator-activated receptor-α (PPAR-α) gene expression examinations were performed.Results: At week 14, control HFFD rats had significantly (p<0.05) higher FBG, low-density lipoprotein cholesterol, triglycerides, and insulin secretions together with impaired OGTT as compared to normal control rats. These parameters indicated an insulin resistant and dyslipidemic condition in HFFD rats. ERB 250 and 500 mg/kg or pioglitazone 10 mg/kg significantly ameliorated all of these changes. HFFD also caused a significant increase in fat accumulation and a decrease in PPAR-α gene expression in the livers which were significantly decreased by ERB.Conclusions: ERB decreases insulin resistance and intrahepatic fat accumulation possibly through increasing PPAR-α gene expression in HFFD rats. ERB might possibly be a neutraceutical for the metabolic syndrome patients.1. Gauthier MS, Favier R, Lavoie JM. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006;95:273-81.2. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013;3:1-58.3. Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med 2016;26:364-73.4. Fouret G, Gaillet S, Lecomte J, Bonafos B, Djohan F, Barea B, et al. 20-week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high-fat-high-fructose diet. Br J Nutr 2018;119:368-80.5. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010;299:E685-94.6. Vichit W, Saewan N. Antioxidant activities and cytotoxicity of thai pigmented rice. Int J Pharm Pharm Sci 2015;7:329-34.7. Settharaksa S, Madaka F, Charkree K, Charoenchai L. The study of anti-inflammatory and antioxidant activity in cold press rice bran oil from rice in Thailand. Int J Pharm Pharm Sci 2014;6:428-31.8. Sukrasno S, Tuty S, Fidrianny I. Antioxidant evaluation and phytochemical content of various rice bran extracts of three varieties rice from Semarang, central Java, Indonesia. Asian J Pharm Clin Res 2017;10:377-82.9. Sabir A, Rafi M, Darusman LK. Discrimination of red and white rice bran from indonesia using HPLC fingerprint analysis combined with chemometrics. Food Chem 2017;221:1717-22.10. Niu Y, Gao B, Slavin M, Zhang X, Yang F, Bao J, et al. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT Food Sci Technol 2013;54:521-7.11. Boonloh K, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Pannangpetch P, et al. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients 2015;7:6313-29.12. Peñarrieta JM, Alvarado JA, Akesson B, Bergenståhl B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An andean pseudocereal. Mol Nutr Food Res 2008;52:708-17.13. Mungkhunthod S, Senggunprai L, Tangsucharit P, Sripui J, Kukongviriyapan U, Pannangpetch P. Antidesma thwaitesianum pomace extract improves insulin sensitivity via upregulation of PPAR-γ in high fat diet/streptozotocin-induced Type 2 diabetic rats. Asia Pac J Sci Technol 2016;21:63-76.14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.15. Naowaboot J, Wannasiri S. Anti-lipogenic effect of Senna alata leaf extract in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016;6:232-8.16. Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, et al. Cinnamon increases liver glycogen in an animal model of insulin


Author(s):  
Jiraprapa Ponglong ◽  
Laddawan Senggunprai ◽  
Panot Tungsutjarit ◽  
Ronnachai Changsri ◽  
Tunvaraporn Proongkhong ◽  
...  

Objective: Tubtim-chumphae rice is hybrid Thai rice with a red pericarp. This study was aimed to investigate the effect of Tubtim-chumphae rice bran on insulin resistance and intrahepatic fat accumulation in high-fat-high-fructose diet (HFFD) fed rats.Methods: Ethanolic extract of rice bran (ERB) was prepared using a 50% ethanol-water. Male Sprague-Dawley rats were fed HFFD (40% lard, 20% fructose) for 10 weeks, followed by concomitant administrations of distilled water or ERB at 250 or 500 mg/kg/day or pioglitazone at 10 mg/kg/day for a further 4 weeks in treated groups. Normal control rats were fed normal chow and distilled water. At the end of all treatments, fasting blood glucose (FBG), an oral glucose tolerance test (OGTT), serum insulin levels, lipid profiles, and liver fat contents were measured. Liver histological and peroxisome proliferator-activated receptor-α (PPAR-α) gene expression examinations were performed.Results: At week 14, control HFFD rats had significantly (p<0.05) higher FBG, low-density lipoprotein cholesterol, triglycerides, and insulin secretions together with impaired OGTT as compared to normal control rats. These parameters indicated an insulin resistant and dyslipidemic condition in HFFD rats. ERB 250 and 500 mg/kg or pioglitazone 10 mg/kg significantly ameliorated all of these changes. HFFD also caused a significant increase in fat accumulation and a decrease in PPAR-α gene expression in the livers which were significantly decreased by ERB.Conclusions: ERB decreases insulin resistance and intrahepatic fat accumulation possibly through increasing PPAR-α gene expression in HFFD rats. ERB might possibly be a neutraceutical for the metabolic syndrome patients.1. Gauthier MS, Favier R, Lavoie JM. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006;95:273-81.2. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013;3:1-58.3. Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med 2016;26:364-73.4. Fouret G, Gaillet S, Lecomte J, Bonafos B, Djohan F, Barea B, et al. 20-week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high-fat-high-fructose diet. Br J Nutr 2018;119:368-80.5. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010;299:E685-94.6. Vichit W, Saewan N. Antioxidant activities and cytotoxicity of thai pigmented rice. Int J Pharm Pharm Sci 2015;7:329-34.7. Settharaksa S, Madaka F, Charkree K, Charoenchai L. The study of anti-inflammatory and antioxidant activity in cold press rice bran oil from rice in Thailand. Int J Pharm Pharm Sci 2014;6:428-31.8. Sukrasno S, Tuty S, Fidrianny I. Antioxidant evaluation and phytochemical content of various rice bran extracts of three varieties rice from Semarang, central Java, Indonesia. Asian J Pharm Clin Res 2017;10:377-82.9. Sabir A, Rafi M, Darusman LK. Discrimination of red and white rice bran from indonesia using HPLC fingerprint analysis combined with chemometrics. Food Chem 2017;221:1717-22.10. Niu Y, Gao B, Slavin M, Zhang X, Yang F, Bao J, et al. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT Food Sci Technol 2013;54:521-7.11. Boonloh K, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Pannangpetch P, et al. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients 2015;7:6313-29.12. Peñarrieta JM, Alvarado JA, Akesson B, Bergenståhl B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An andean pseudocereal. Mol Nutr Food Res 2008;52:708-17.13. Mungkhunthod S, Senggunprai L, Tangsucharit P, Sripui J, Kukongviriyapan U, Pannangpetch P. Antidesma thwaitesianum pomace extract improves insulin sensitivity via upregulation of PPAR-γ in high fat diet/streptozotocin-induced Type 2 diabetic rats. Asia Pac J Sci Technol 2016;21:63-76.14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.15. Naowaboot J, Wannasiri S. Anti-lipogenic effect of Senna alata leaf extract in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016;6:232-8.16. Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, et al. Cinnamon increases liver glycogen in an animal model of insulin


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
S Saenthaweesuk ◽  
R Jitvaropas ◽  
N Kandee ◽  
N Lerdvuthisopon

2017 ◽  
Author(s):  
W Parklak ◽  
N Munkong ◽  
S Somnuk ◽  
N Sompara ◽  
J Naowaboot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document