scholarly journals A Novel Fast Convergence Control Scheme for a Class of 3D Chaotic Systems with Uncertain Parameters and External Disturbances

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Haipeng Su ◽  
Runzi Luo ◽  
Ling Xu ◽  
Meichun Huang ◽  
Jiaojiao Fu

This paper studies the control of a class of 3D chaotic systems with uncertain parameters and external disturbances. A new method which is referred as the analytical solution approach is firstly proposed for constructing Lyapunov function. Then, for suppressing the trajectories of the 3D chaotic system to its equilibrium point 00,0,0, a novel fast convergence controller containing parameter λ which determines the convergence rate of the system is presented. By using the designed Lyapunov function, the stability of the closed-loop system is proved via the Lyapunov stability theorem. Computer simulations are employed to a new chaotic system to illustrate the effectiveness of the theoretical results.

2012 ◽  
Vol 170-173 ◽  
pp. 3381-3384
Author(s):  
Li Xin Yang ◽  
Wan Sheng He ◽  
Xiao Jun Liu

we study the parameter identification of a class of non-autonomous chaotic system in this paper. Based on the stability theory, we implement accurate identification by suitable adaptive law are given to identify any uncertain parameters of a class of nonautonmous chaotic systems. Theory analysis and numerical simulations of Dufffing chaotic system is presented to verify that the adaptive control to identify the parameters are effective and feasible.


2017 ◽  
Vol 11 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Fernando Serrano ◽  
Josep M. Rossell

AbstractIn this paper a hybrid passivity based and fuzzy type-2 controller for chaotic and hyper-chaotic systems is presented. The proposed control strategy is an appropriate choice to be implemented for the stabilization of chaotic and hyper-chaotic systems due to the energy considerations of the passivity based controller and the flexibility and capability of the fuzzy type-2 controller to deal with uncertainties. As it is known, chaotic systems are those kinds of systems in which one of their Lyapunov exponents is real positive, and hyper-chaotic systems are those kinds of systems in which more than one Lyapunov exponents are real positive. In this article one chaotic Lorentz attractor and one four dimensions hyper-chaotic system are considered to be stabilized with the proposed control strategy. It is proved that both systems are stabilized by the passivity based and fuzzy type-2 controller, in which a control law is designed according to the energy considerations selecting an appropriate storage function to meet the passivity conditions. The fuzzy type-2 controller part is designed in order to behave as a state feedback controller, exploiting the flexibility and the capability to deal with uncertainties. This work begins with the stability analysis of the chaotic Lorentz attractor and a four dimensions hyper-chaotic system. The rest of the paper deals with the design of the proposed control strategy for both systems in order to design an appropriate controller that meets the design requirements. Finally, numerical simulations are done to corroborate the obtained theoretical results.


2018 ◽  
Vol 7 (3) ◽  
pp. 1931 ◽  
Author(s):  
Sivaperumal Sampath ◽  
Sundarapandian Vaidyanathan ◽  
Aceng Sambas ◽  
Mohamad Afendee ◽  
Mustafa Mamat ◽  
...  

This paper reports the finding a new four-scroll chaotic system with four nonlinearities. The proposed system is a new addition to existing multi-scroll chaotic systems in the literature. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system via MATLAB are unveiled. As the new four-scroll chaotic system is shown to have three unstable equilibrium points, it has a self-excited chaotic attractor. An electronic circuit simulation of the new four-scroll chaotic system is shown using MultiSIM to check the feasibility of the four-scroll chaotic model.


2019 ◽  
Vol 9 (4) ◽  
pp. 781 ◽  
Author(s):  
Xiong Wang ◽  
Ünal Çavuşoğlu ◽  
Sezgin Kacar ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Chaotic systems without equilibrium are of interest because they are the systems with hidden attractors. A nonequilibrium system with chaos is introduced in this work. Chaotic behavior of the system is verified by phase portraits, Lyapunov exponents, and entropy. We have implemented a real electronic circuit of the system and reported experimental results. By using this new chaotic system, we have constructed S-boxes which are applied to propose a novel image encryption algorithm. In the designed encryption algorithm, three S-boxes with strong cryptographic properties are used for the sub-byte operation. Particularly, the S-box for the sub-byte process is selected randomly. In addition, performance analyses of S-boxes and security analyses of the encryption processes have been presented.


1995 ◽  
Vol 05 (01) ◽  
pp. 297-302 ◽  
Author(s):  
JÖRG SCHWEIZER ◽  
MICHAEL PETER KENNEDY ◽  
MARTIN HASLER ◽  
HERVÉ DEDIEU

Since Pecora & Carroll [Pecora & Carroll, 1991; Carroll & Pecora, 1991] have shown that it is possible to synchronize chaotic systems by means of a drive-response partition of the systems, various authors have proposed synchronization schemes and possible secure communications applications [Dedieu et al., 1993, Oppenheim et al., 1992]. In most cases synchronization is proven by numerically computing the conditional Lyapunov exponents of the response system. In this work a new synchronization method using error-feedback is developed, where synchronization is provable using a global Lyapunov function. Furthermore, it is shown how this scheme can be applied to secure communication systems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaoyuan Wang ◽  
Xue Zhang ◽  
Meng Gao

Memristor is a kind of passive nonlinear element, which is widely used in nonlinear systems, especially chaotic systems, because of its nanometer size, nonvolatile property, and good nonlinear characteristics. Compared with general chaotic systems, chaotic systems based on memristors have richer dynamic characteristics. However, the current research mainly focuses on the binary and continuous chaotic systems based on memristors, and studies on the tri-valued and multi-valued memristor chaotic systems are relative scarce. For this reason, a mathematical model of tri-valued memristor is proposed, and the circuit characteristics of the model are studied. Furthermore, based on this model, a new chaotic system is designed and analyzed. This innovation enriches the types of chaotic systems and lays the foundation for the application of tri-valued and multi-valued memristors in nonlinear systems.


2010 ◽  
Vol 171-172 ◽  
pp. 723-727
Author(s):  
Hong Zhang ◽  
Qiu Mei Pu

For the synchronization of fractional-order chaotic systems with uncertain parameters, a controller based on sliding mode theory is presented. Based on the stability theory of fractional-order system, stability of the proposed method is analyzed. The theory is successfully applied to synchronize fractional Newton-Leipnik chaotic systems with uncertain parameters. The simulation results show the effectiveness of the proposed controller.


2018 ◽  
Vol 7 (3) ◽  
pp. 1245 ◽  
Author(s):  
Aceng Sambas ◽  
Mustafa Mamat ◽  
Sundarapandian Vaidyanathan ◽  
Muhammad Mohamed ◽  
Mada Sanjaya

In the chaos literature, there is currently significant interest in the discovery of new chaotic systems with hidden chaotic attractors. A new 4-D chaotic system with only two quadratic nonlinearities is investigated in this work. First, we derive a no-equilibrium chaotic system and show that the new chaotic system exhibits hidden attractor. Properties of the new chaotic system are analyzed by means of phase portraits, Lyapunov chaos exponents, and Kaplan-Yorke dimension. Then an electronic circuit realization is shown to validate the chaotic behavior of the new 4-D chaotic system. Finally, the physical circuit experimental results of the 4-D chaotic system show agreement with numerical simulations.


2018 ◽  
Vol 28 (13) ◽  
pp. 1850164 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Shirin Panahi ◽  
Anitha Karthikeyan ◽  
Ahmed Alsaedi ◽  
Viet-Thanh Pham ◽  
...  

Designing new chaotic system with specific features is an interesting field in nonlinear dynamics. In this paper, some new chaotic systems with cyclic symmetry are proposed. In order to understand the overall behavior of such systems, the dynamical analyses such as stability analysis, bifurcation and Lyapunov exponent analysis are done. The accurate examination of bifurcation plot represents that these systems are multistable which makes them more interesting. Also, the basin of attraction of these systems is investigated to detect the type of attractors of these systems which are self-excited. Finally, the circuit implementation is carried out to show their feasibility.


Sign in / Sign up

Export Citation Format

Share Document