scholarly journals Prevalence and Antimicrobial Resistance of Escherichia coli Isolated from Various Meat Types in the Tamale Metropolis of Ghana

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Frederick Adzitey ◽  
Prince Assoah-Peprah ◽  
Gabriel A. Teye ◽  
Anou M. Somboro ◽  
Hezekiel M. Kumalo ◽  
...  

Meats are important potential sources of foodborne pathogens including Escherichia coli. This study was conducted to determine the prevalence and antimicrobial resistance of Escherichia coli isolated from meats in the Tamale metropolis of Ghana. Isolation of Escherichia coli was done using the procedure according to the USA-FDA Bacteriological Analytical Manual. Antibiotic resistance patterns in the Escherichia coli isolates were determined by the Kirby-Bauer disk diffusion method against 8 antibiotics. The overall prevalence of Escherichia coli in the meat samples was 84.00% (189/225). Mutton (88.89%), guinea fowl (88.89%), beef (86.67%), local chicken (80.00%), and chevon (75.56%) were contaminated by Escherichia coli. The average coliform count was 4.22 cfu/cm2 and was highest in guinea fowl (4.94 log cfu/cm2) and lowest in local chicken (3.23 log cfu/cm2). The Escherichia coli isolates were highly resistant to erythromycin (85.00%), tetracycline (73.33%), and ampicillin (71.67%). The multiple antibiotic resistance (MAR) index ranged from 0.13 to 1. The Escherichia coli isolates exhibited 23 antimicrobial resistance patterns with resistant pattern TeAmpE (tetracycline-ampicillin-erythromycin) being the most common. Multidrug resistance was 68.33% (41/60) among the Escherichia coli isolates. The results showed that Escherichia coli was commonly present in the various meat types and exhibited multidrug resistances, necessitating efficient antibiotic stewardship guidelines to streamline their use in the production industry.

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2018 ◽  
Author(s):  
Christian Vinueza-Burgos ◽  
David Ortega-Paredes ◽  
Cristian Narváez ◽  
Lieven De Zutter ◽  
Jeannete Zurita

AbstractAntimicrobial resistance (AR) is a worldwide concern. Up to a 160% increase in antibiotic usage in food animals is expected in Latin American countries. The poultry industry is an increasingly important segment of food production and contributor to AR. The objective of this study was to evaluate the prevalence, AR patterns and the characterization of relevant resistance genes in Extended Spectrum β-lactamases (ESBL) and AmpC E. coli from large poultry farms in Ecuador. Sampling was performed from June 2013 to July 2014 in 6 slaughterhouses that slaughter broilers from 115 farms totaling 384 flocks. Each sample of collected caeca was streaked onto TBX agar supplemented with cefotaxime (3 mg/l). In total, 176 isolates were analyzed for antimicrobial resistance patterns by the disk diffusion method and for blaCTX-M, blaTEM, blaCMY, blaSHV, blaKPC, and mcr-1 by PCR and sequencing. ESBL and AmpC E. coli were found in 362 flocks (94.3%) from 112 farms (97.4%). We found that 98.3% of the isolates were multi-resistant to antibiotics. Low resistance was observed for ertapenem and nitrofurantoin. The most prevalent ESBL genes were the blaCTX-M (90.9%) blaCTX-M-65, blaCTX-M-55 and blaCTX-M-3 alleles. Most of the AmpC strains presented the blaCMY-2 gene. Three isolates showed the mcr-1 gene. Poultry production systems represent a hotspot for antimicrobial resistance in Ecuador, possibly mediated by the extensive use of antibiotics. Monitoring this sector in national and regional plans of antimicrobial resistance surveillance should therefore be considered.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 420 ◽  
Author(s):  
Mst. Sonia Parvin ◽  
Sudipta Talukder ◽  
Md. Yamin Ali ◽  
Emdadul Haque Chowdhury ◽  
Md. Tanvir Rahman ◽  
...  

Escherichia coli is known as one of the most important foodborne pathogens in humans, and contaminated chicken meat is an important source of foodborne infection with this bacterium. The occurrence of extended-spectrum β-lactamase (ESBL)-producing E. coli (ESBL-Ec), in particular, in chicken meat is considered a global health problem. This study aimed to determine the magnitude of E. coli, with special emphasis on ESBL-Ec, along with their phenotypic antimicrobial resistance pattern in frozen chicken meat. The study also focused on the determination of ESBL-encoding genes in E. coli. A total of 113 frozen chicken meat samples were purchased from 40 outlets of nine branded supershops in five megacities in Bangladesh. Isolation and identification of E. coli were done based on cultural and biochemical properties, as well as PCR assay. The resistance pattern was determined by the disc diffusion method. ESBL-encoding genes were determined by multiplex PCR. The results showed that 76.1% of samples were positive for E. coli, of which 86% were ESBL producers. All the isolates were multidrug-resistant (MDR). Resistance to 9–11 and 12–13 antimicrobial classes was observed in 38.4% and 17.4% isolates, respectively, while only 11.6% were resistant to 3–5 classes. Possible extensive drug resistance (pXDR) was found in 2.3% of isolates. High single resistance was observed for oxytetracycline (93%) and amoxicillin (91.9%), followed by ampicillin (89.5%), trimethoprim–sulfamethoxazole, and pefloxacin (88.4%), and tetracycline (84.9%). Most importantly, 89.6% of isolates were resistant to carbapenems. All the isolates were positive for the blaTEM gene. However, the blaSHV and blaCTX-M-2 genes were identified in two ESBL-non producer isolates. None of the isolates carried the blaCTX-M-1 gene. This study provided evidence of the existence of MDR and pXDR ESBL-Ec in frozen chicken meat in Bangladesh, which may pose a risk to human health if the meat is not properly cooked or pickled raw only. This emphasizes the importance of the implementation of good slaughtering and processing practices by the processors.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 755 ◽  
Author(s):  
Do Kyung-Hyo ◽  
Byun Jae-Won ◽  
Lee Wan-Kyu

This study aimed to survey the antimicrobial resistance profiles of 690 pathogenic Escherichia coli isolates obtained from Korean pigs with symptoms of enteric colibacillosis between 2007 and 2017, while assessing the change in antimicrobial resistance profiles before and after the ban on antibiotic growth promoters (AGPs). Following the Clinical and Laboratory Standards Institute guidelines, the antimicrobial resistance phenotype was analyzed through the disk diffusion method, and the genotype was analyzed by the polymerase chain reaction. After the ban on AGPs, resistance to gentamicin (from 68.8% to 39.0%), neomycin (from 84.9% to 57.8%), ciprofloxacin (from 49.5% to 39.6%), norfloxacin (from 46.8% to 37.3%), and amoxicillin/clavulanic acid (from 40.8% to 23.5%) decreased compared to before the ban. However, resistance to cephalothin (from 51.4% to 66.5%), cefepime (from 0.0% to 2.4%), and colistin (from 7.3% to 11.0%) had increased. We confirmed a high percentage of multidrug resistance before (95.0%) and after (96.6%) the ban on AGPs. The AmpC gene was the most prevalent from 2007 to 2017 (60.0%), followed by the blaTEM gene (55.5%). The blaTEM was prevalent before (2007–2011, 69.3%) and after (2012–2017, 49.2%) the ban on AGPs. These results provide data that can be used for the prevention and treatment of enteric colibacillosis.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


2010 ◽  
Vol 4 (12) ◽  
pp. 804-809 ◽  
Author(s):  
Farida Ohmani ◽  
Khadija Khedid ◽  
Saad Britel ◽  
Aicha Qasmaoui ◽  
Reda Charof ◽  
...  

Introduction: Salmonella enterica is recognised worldwide as one of the major agents of human gastrointestinal infections. The aim of the present work is to ascertain the antimicrobial susceptibilities of 150 Salmonella enterica serovar Enteritidis isolates from humans in Morocco during the period from 2000 to 2008. Methodology: Antimicrobial resistance determination was performed by disk diffusion method using seven antibiotics. The minimal inhibitory concentration (MIC) of ciprofloxacin was determined for nalidixic acid-resistant (NAR) isolates using E-test strips. Results: Sixty-one (42%) isolates were resistant to at least one class of antimicrobial agent. The largest numbers of resistant isolates were observed for nalidixic acid with 53 isolates (36%) followed by ampicillin with 7 isolates (5%), tetracycline with 6 isolates (4%), and trimethoprim/sulfamethoxazole with 2 isolates (1%).The resistant isolates were grouped in seven different resistance patterns of which two isolates were resistant to three antibiotics. Among the 53 (36%) NAR isolates, 37 (76%) had a reduced susceptibility to ciprofloxacin. Conclusion: Resistance rates of Salmonella enterica serovar Enteritidis from Morocco are generally low but the resistance to nalidixic acid is worryingly common. Continual surveillance of antibiotic resistance is of primary importance.


2021 ◽  
Vol 24 (1) ◽  
pp. 32-42
Author(s):  
M. Jajarmi ◽  
M. Askari Badouei ◽  
R. Ghanbarpour ◽  
A. Karmostaji ◽  
H. Alizade

Foodborne transmission of Shiga toxin-producing Escherichia coli (STEC) poses a threat to public health. The Clermont typing schemes (previous and revised) have been used widely to phylotype E. coli. The present study was conducted to compare the relationship of the Clermont phylogenet-ic schemes in STEC strains isolated from goats and antibiotic resistance patterns in the southeast of Iran. Overall 52 strains carrying the stx gene were used for subsequent analysis. All strains were determined by analysing the genomic DNA with a PCR-based method using the two Clermont et al. (2000, 2013) schemes. Extended spectrum beta-lactamase (ESBL) producing strains were con-firmed by the double disk-diffusion method. STEC strains were also tested for susceptibility to 20 antimicrobials agents. In the original Clermont method, the prevalent phylogroups were B1 (69.2%) and A (28.8%). The significant phylogenetic groups of strains according to the revised Clermont method were B1 (82.7%), A (13.5%) and unknown (3.8%). However, STEC strains underwent changes as noted from A to B1 (17.3%), B1 to unknown (3.8%), B1 to A (1.9%) and D to B1 (1.9%) groupings. Of the 52 stx-positive strains, two ESBL producing strains were detected. Susceptibility data showed that the most frequent resistance phenotype was related to cefazolin (90.4%), streptomycin (88.5%), ampicillin (86.5%) and oxytetracycline (82.7%) respectively. Alt-hough the overall frequency of the reassigned phylotypes was not significant, most changes oc-curred within the A phylotype. Therefore, implementation of the new method on isolates belong-ing to the A phylotype in the old method seems to be necessary to obtain accurate results.


Author(s):  
Maghsoud Kafshnouchi ◽  
Marzieh Safari ◽  
Amir Khodavirdipour ◽  
Abbas Bahador ◽  
Seyed Hamid Hashemi ◽  
...  

Abstract Acinetobacter baumannii is a bacterium found in most places, especially in clinics and hospitals, and an important agent of nosocomial infections. The presence of class D enzymes such as OXA-type carbapenemases in A. baumannii is proven to have a key function in resistance to carbapenem. The aim of the current study is to determine the blaOXA-type carbapenemase genes and antimicrobial resistance among clinically isolated samples of A. baumannii. We assessed 100 clinically isolated specimens of A. baumannii from patients in intensive care units of educational hospitals of Hamadan, West of Iran. The A. baumannii isolates' susceptibility to antibiotics was performed employing disk diffusion method. Multiplex polymerase chain reaction was used to identify the blaOXA-24-like , blaOXA-23-like , blaOXA-58-like , and blaOXA-51-like genes. The blaOXA-23-like , blaOXA-24-like , and blaOXA-58-like genes' prevalence were found to be 84, 58, and 3%, respectively. The highest coexistence of the genes was for blaOXA-51/23 (84%) followed by blaOXA-51/24-like (58%). The blaOXA-51/23- like pattern of genes is a sort of dominant gene in resistance in A. baumannii from Hamadan hospitals. The highest resistance to piperacillin (83%) and ciprofloxacin (81%) has been observed in positive isolates of blaOXA-23-like . The A. baumannii isolates with blaOXA-58-like genes did not show much resistance to antibiotics. Based on the results of the phylogenetic tree analysis, all isolates have shown a high degree of similarity. This study showed the high frequency of OXA-type carbapenemase genes among A. baumannii isolates from Hamadan hospitals, Iran. Thus, applying an appropriate strategy to limit the spreading of these strains and also performing new treatment regimens are necessary.


Sign in / Sign up

Export Citation Format

Share Document