scholarly journals Three-Point Boundary Value Problems for the Langevin Equation with the Hilfer Fractional Derivative

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Athasit Wongcharoen ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

We discuss the existence and uniqueness of solutions for the Langevin fractional differential equation and its inclusion counterpart involving the Hilfer fractional derivatives, supplemented with three-point boundary conditions by means of standard tools of the fixed-point theorems for single and multivalued functions. We make use of Banach’s fixed-point theorem to obtain the uniqueness result, while the nonlinear alternative of the Leray-Schauder type and Krasnoselskii’s fixed-point theorem are applied to obtain the existence results for the single-valued problem. Existence results for the convex and nonconvex valued cases of the inclusion problem are derived via the nonlinear alternative for Kakutani’s maps and Covitz and Nadler’s fixed-point theorem respectively. Examples illustrating the obtained results are also constructed. (2010) Mathematics Subject Classifications. This study is classified under the following classification codes: 26A33; 34A08; 34A60; and 34B15.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Thanin Sitthiwirattham ◽  
Jessada Tariboon ◽  
Sotiris K. Ntouyas

We study a new class of three-point boundary value problems of nonlinear second-orderq-difference equations. Our problems contain different numbers ofqin derivatives and integrals. By using a variety of fixed point theorems (such as Banach’s contraction principle, Boyd and Wong fixed point theorem for nonlinear contractions, Krasnoselskii’s fixed point theorem, and Leray-Schauder nonlinear alternative) and Leray-Schauder degree theory, some new existence and uniqueness results are obtained. Illustrative examples are also presented.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 694
Author(s):  
V. Usha ◽  
M. Mallika Arjunan

In this manuscript, we work to accomplish the Krasnoselskii's fixed point theorem to analyze the existence results for an impulsive neutral integro-differential equations  with infinite delay and non-instantaneous impulses in Banach spaces. By deploying the fixed point theorem with semigroup theory, we developed the coveted outcomes.   


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Selvaraj Suganya ◽  
Dumitru Baleanu ◽  
Siva Selvarasu ◽  
Mani Mallika Arjunan

A recent nonlinear alternative for multivalued contractions in Fréchet spaces thanks to Frigon fixed point theorem consolidated with semigroup theory is utilized to examine the existence results for fractional neutral integrodifferential inclusions (FNIDI) with state-dependent delay (SDD). An example is described to represent the hypothesis.


2021 ◽  
pp. 162-172
Author(s):  
R. Ravi Sankar ◽  
N. Sreedhar ◽  
K. R. Prasad

The present paper focuses on establishing the existence and uniqueness of solutions to the nonlinear differential equations of order four y(4)(t) + g(t, y(t)) = 0, t ∈ [a, b], together with the non-homogeneous three-point boundary conditions y(a) = 0, y′(a) = 0, y′′(a) = 0, y(b) − αy(ξ ) = λ, where 0 ≤ a < b, ξ ∈ (a, b), α, λ are real numbers and the function g: [a, b] × R→R is a continuous with g(t, 0) ≠ 0. With the aid of an estimate on the integral of kernel, the existence results to the problem are proved by employing fixed point theorem due to Banach.


2018 ◽  
Vol 1 (1) ◽  
pp. 21-36 ◽  
Author(s):  
Mısır J. Mardanov ◽  
Yagub A. Sharifov ◽  
Kamala E. Ismayilova

AbstractThis paper is devoted to a system of nonlinear impulsive differential equations with three-point boundary conditions. The Green function is constructed and considered original problem is reduced to the equivalent impulsive integral equations. Sufficient conditions are found for the existence and uniqueness of solutions for the boundary value problems for the first order nonlinear system of the impulsive ordinary differential equations with three-point boundary conditions. The Banach fixed point theorem is used to prove the existence and uniqueness of a solution of the problem and Schaefer’s fixed point theorem is used to prove the existence of a solution of the problem under consideration. We illustrate the application of the main results by two examples.


Author(s):  
Kazem Nouri ◽  
Marjan Nazari ◽  
Bagher Keramati

In this paper, by means of the Banach fixed point theorem and the Krasnoselskii's fixed point theorem, we investigate the existence of solutions for some fractional neutral functional integro-differential equations involving infinite delay. This paper deals with the fractional equations in the sense of Caputo fractional derivative and in the Banach spaces. Our results generalize the previous works on this issue. Also, an analytical example is presented to illustrate our results.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 526
Author(s):  
Ehsan Pourhadi ◽  
Reza Saadati ◽  
Sotiris K. Ntouyas

Throughout this paper, via the Schauder fixed-point theorem, a generalization of Krasnoselskii’s fixed-point theorem in a cone, as well as some inequalities relevant to Green’s function, we study the existence of positive solutions of a nonlinear, fractional three-point boundary-value problem with a term of the first order derivative ( a C D α x ) ( t ) = f ( t , x ( t ) , x ′ ( t ) ) , a < t < b , 1 < α < 2 , x ( a ) = 0 , x ( b ) = μ x ( η ) , a < η < b , μ > λ , where λ = b − a η − a and a C D α denotes the Caputo’s fractional derivative, and f : [ a , b ] × R × R → R is a continuous function satisfying the certain conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Thanin Sitthiwirattham ◽  
Jessada Tariboon ◽  
Sotiris K. Ntouyas

We consider a discrete fractional boundary value problem of the formΔαu(t)=f(t+α-1,u(t+α-1)),  t∈[0,T]ℕ0:={0,1,…,T},  u(α-2)=0,  u(α+T)=Δ-βu(η+β),where1<α≤2,β>0,η∈[α-2,α+T-1]ℕα-2:={α-2,α-1,…,α+T-1}, andf:[α-1,α,…,α+T-1]ℕα-1×ℝ→ℝis a continuous function. The existence of at least one solution is proved by using Krasnoselskii's fixed point theorem and Leray-Schauder's nonlinear alternative. Some illustrative examples are also presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xi Fu ◽  
Xiaoyou Liu

This paper is concerned with the fractional separated boundary value problem of fractional differential equations with fractional impulsive conditions. By means of the Schaefer fixed point theorem, Banach fixed point theorem, and nonlinear alternative of Leray-Schauder type, some existence results are obtained. Examples are given to illustrate the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xi Fu ◽  
Xiaoyou Liu

This paper studies the existence results for nonseparated boundary value problems of fractional differential equations with fractional impulsive conditions. By means of Schaefer fixed point theorem, Banach fixed point theorem, and nonlinear alternative of Leray-Schauder type, some existence results are obtained. Examples are given to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document