scholarly journals Product Dictionary Learning-Based SAR Target Configuration Recognition

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Junsheng Liu

Dictionary construction is a key factor for the sparse representation- (SR-) based algorithms. It has been verified that the learned dictionaries are more effective than the predefined ones. In this paper, we propose a product dictionary learning (PDL) algorithm to achieve synthetic aperture radar (SAR) target configuration recognition. The proposed algorithm obtains the dictionaries from a statistical standpoint to enhance the robustness of the proposed algorithm to noise. And, taking the inevitable multiplicative speckle in SAR images into account, the proposed algorithm employs the product model to describe SAR images. A more accurate description of the SAR image results in higher recognition rates. The accuracy and robustness of the proposed algorithm are validated by the moving and stationary target acquisition and recognition (MSTAR) database.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3535
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing

Sparse representation (SR) has been verified to be an effective tool for pattern recognition. Considering the multiplicative speckle noise in synthetic aperture radar (SAR) images, a product sparse representation (PSR) algorithm is proposed to achieve SAR target configuration recognition. To extract the essential characteristics of SAR images, the product model is utilized to describe SAR images. The advantages of sparse representation and the product model are combined to realize a more accurate sparse representation of the SAR image. Moreover, in order to weaken the influences of the speckle noise on recognition, the speckle noise of SAR images is modeled by the Gamma distribution, and the sparse vector of the SAR image is obtained from q statistical standpoint. Experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) database. The experimental results validate the effectiveness and robustness of the proposed algorithm, which can achieve higher recognition rates than some of the state-of-the-art algorithms under different circumstances.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Li Ma

In order to handle the problem of synthetic aperture radar (SAR) target recognition, an improved sparse representation-based classification (SRC) is proposed. According to the sparse coefficient vector resulting from the global dictionary, the largest coefficient in each class is taken as the reference. Then, the surrounding neighborhoods of the sample with the largest coefficient are selected to construct the optimal local dictionary in each training class. Afterwards, the samples in the local dictionary are used to reconstruct the test sample to be identified. Finally, the decision is made according to the comparison of the reconstruction errors from different classes. In the experiments, the proposed method is verified based on the moving and stationary target acquisition and recognition (MSTAR) dataset. The results show that the proposed method has performance advantages over existing methods, which demonstrates its effectiveness and robustness.


Author(s):  
K. Tummala ◽  
A. K. Jha ◽  
S. Kumar

Synthetic aperture radar technology has revolutionized earth observation with very high resolutions of below 5m, making it possible to distinguish individual urban features like buildings and even cars on the surface of the earth. But, the difficulty in interpretation of these images has hindered their use. The geometry of target objects and their orientation with respect to the SAR sensor contribute enormously to unexpected signatures on SAR images. Geometry of objects can cause single, double or multiple reflections which, in turn, affect the brightness value on the SAR images. Occlusions, shadow and layover effects are present in the SAR images as a result of orientation of target objects with respect to the incident microwaves. Simulation of SAR images is the best and easiest way to study and understand the anomalies. This paper discusses synthetic aperture radar image simulation, with the study of effect of target geometry as the main aim. Simulation algorithm has been developed in the time domain to provide greater modularity and to increase the ease of implementation. This algorithm takes into account the sensor and target characteristics, their locations with respect to the earth, 3-dimensional model of the target, sensor velocity, and SAR parameters. two methods have been discussed to obtain position and velocity vectors of SAR sensor – the first, from the metadata of real SAR image used to verify the simulation algorithm, and the second, from satellite orbital parameters. Using these inputs, the SAR image coordinates and backscatter coefficients for each point on the target are calculated. The backscatter coefficients at target points are calculated based on the local incidence angles using Muhleman's backscatter model. The present algorithm has been successfully implemented on radarsat-2 image of San Francisco bay area. Digital elevation models (DEMs) of the area under consideration are used as the 3d models of the target area. DEMs of different resolutions have been used to simulate SAR images in order to study how the target models affect the accuracy of simulation algorithm. The simulated images have been compared with radarsat-2 images to observe the efficiency of the simulation algorithm in accurately representing the locations and extents of different objects in the target area. The simulated algorithm implemented in this paper has given satisfactory results as the simulated images accurately show the different features present in the DEM of the target area.


Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


2020 ◽  
pp. 1223-1232
Author(s):  
Aseel Sami ◽  
Matheel E. Abdulmunem

In this review paper, several studies and researches were surveyed for assisting future researchers to identify available techniques in the field of classification of Synthetic Aperture Radar (SAR) images. SAR images are becoming increasingly important in a variety of remote sensing applications due to the ability of SAR sensors to operate in all types of weather conditions, including day and night remote sensing for long ranges and coverage areas. Its properties of vast planning, search, rescue, mine detection, and target identification make it very attractive for surveillance and observation missions of Earth resources.  With the increasing popularity and availability of these images, the need for machines has emerged to enhance the ability to identify and interpret these images effectively. This is due to the fact that SAR image processing requires the formation of an image from the measured radar scatter returns, followed by a treatment to discover and define the image's composition. After reviewing several previous studies that succeeded in achieving a classification of SAR images for specific goals, it became obvious that they could be generalized to all types of SAR images. The most prominent use of Convolutional Neural Networks (CNN) was successful in extracting features from the images and training the neural network to analyze and classify them into classes according to these features. The dataset used in this model was obtained from the Moving and Stationary Target Acquisition and Recognition (MSTAR) database, which consists of a set of SAR images of military vehicles, for which the application of the CNN approach achieved a final accuracy of 97.91% on ten different classes.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4133 ◽  
Author(s):  
Bing Sun ◽  
Chuying Fang ◽  
Hailun Xu ◽  
Anqi Gao

In general, synthetic aperture radar (SAR) imaging and image processing are two sequential steps in SAR image processing. Due to the large size of SAR images, most image processing algorithms require image segmentation before processing. However, the existence of speckle noise in SAR images, as well as poor contrast and the uneven distribution of gray values in the same target, make SAR images difficult to segment. In order to facilitate the subsequent processing of SAR images, this paper proposes a new method that combines the back-projection algorithm (BPA) and a first-order gradient operator to enhance the edges of SAR images to overcome image segmentation problems. For complex-valued signals, the gradient operator was applied directly to the imaging process. The experimental results of simulated images and real images validate our proposed method. For the simulated scene, the supervised image segmentation evaluation indexes of our method have more than 1.18%, 11.2% and 11.72% improvement on probabilistic Rand index (PRI), variability index (VI), and global consistency error (GCE). The proposed imaging method will make SAR image segmentation and related applications easier.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1154 ◽  
Author(s):  
Xiangli Huang ◽  
Kefeng Ji ◽  
Xiangguang Leng ◽  
Ganggang Dong ◽  
Xiangwei Xing

Moving ship targets appear blurred and defocused in synthetic aperture radar (SAR) images due to the translation motion during the coherent processing. Motion compensation is required for refocusing moving ship targets in SAR scenes. A novel refocusing method for moving ship is developed in this paper. The method is exploiting inverse synthetic aperture radar (ISAR) technique to refocus the ship target in SAR image. Generally, most cases of refocusing are for raw echo data, not for SAR image. Taking into account the advantages of processing in SAR image, the processing data are SAR image rather than raw echo data in this paper. The ISAR processing is based on fast minimum entropy phase compensation method, an iterative approach to obtain the phase error. The proposed method has been tested using Spaceborne TerraSAR-X, Gaofeng-3 images and airborne SAR images of maritime targets.


Sign in / Sign up

Export Citation Format

Share Document