scholarly journals Ophthalmic Diagnosis and Novel Management of Infantile Refsum Disease with Combination Docosahexaenoic Acid and Cholic Acid

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Omar Elghawy ◽  
Alice Y. Zhang ◽  
Ryan Duong ◽  
William G. Wilson ◽  
Eugene Y. Shildkrot

Infantile Refsum disease is a rare peroxisomal biogenesis disorder characterized by impaired alpha-oxidation and accumulation of phytanic acid in the tissues. Patients often present with fundus changes resembling retinitis pigmentosa, developmental delay, sensorineural hearing loss, ataxia, and hepatomegaly. Traditionally, mainstay treatment for this condition has been a phytanic acid-restricted diet, although supplementation with either docosahexaenoic acid or cholic acid has rarely been described in the literature. We present a case of infantile Refsum disease in a child with retinitis pigmentosa-like ocular findings, sensorineural hearing loss, and self-resolving hepatic disease, who developed novel findings of macular edema refractory to carbonic anhydrase inhibitors. We describe management with a phytanic acid-restricted diet and combination docosahexaenoic acid, and cholic acid therapy, which helped to limit progression of her disease.

2019 ◽  
pp. 112067211987939
Author(s):  
Fabiana D’Esposito ◽  
Viviana Randazzo ◽  
Gilda Cennamo ◽  
Nicola Centore ◽  
Paolo Enrico Maltese ◽  
...  

Purpose: Usher syndrome (USH) is an autosomal recessive disorder characterized by congenital sensorineural hearing impairment and retinitis pigmentosa. Classification distinguishes three clinical types of which type I (USH1) is the most severe, with vestibular dysfunction as an added feature. To date, 15 genes and 3 loci have been identified with the USH1G gene being an uncommon cause of USH. We describe an atypical USH1G-related phenotype caused by a novel homozygous missense variation in a patient with profound hearing impairment and relatively mild retinitis pigmentosa, but no vestibular dysfunction. Methods: A 26-year-old female patient with profound congenital sensorineural hearing loss, nyctalopia and retinitis pigmentosa was studied. Audiometric, vestibular and ophthalmologic examination was performed. A panel of 13 genes was tested by next-generation sequencing (NGS). Results: While the hearing loss was confirmed to be profound, the vestibular function resulted normal. Although typical retinitis pigmentosa was present, the age at onset was unusually late for USH1 syndrome. A novel homozygous missense variation (c.1187T>A, p.Leu396Gln) in the USH1G gene has been identified as causing the disease in our patient. Conclusions: Genetic and phenotypic heterogeneity are very common in both isolated and syndromic retinal dystrophies and sensorineural hearing loss. Our findings widen the spectrum of USH allelic disorders and strength the concept that variants in genes that are classically known as underlying one specific clinical USH subtype might result in unexpected phenotypes.


2006 ◽  
Vol 121 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Inga Ebermann ◽  
Hendrik P. N. Scholl ◽  
Peter Charbel Issa ◽  
Elvir Becirovic ◽  
Jürgen Lamprecht ◽  
...  

1999 ◽  
Vol 64 (4) ◽  
pp. 971-985 ◽  
Author(s):  
Fiona C. Mansergh ◽  
Sophia Millington-Ward ◽  
Avril Kennan ◽  
Anna-Sophia Kiang ◽  
Marian Humphries ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6723
Author(s):  
Carla Fuster-García ◽  
Belén García-Bohórquez ◽  
Ana Rodríguez-Muñoz ◽  
Elena Aller ◽  
Teresa Jaijo ◽  
...  

Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the “Usher interactome”. In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype–phenotype correlation.


1988 ◽  
Vol 105 (2) ◽  
pp. 125-131 ◽  
Author(s):  
James M. McDonald ◽  
David A. Newsome ◽  
William F. Rintelmann

Sign in / Sign up

Export Citation Format

Share Document