scholarly journals Computer Mathematical Modeling Based on the Improved Genetic Algorithm and Mobile Computing

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Huixian Wei ◽  
Jia Liu

In order to change the problem of data redundancy in a genetic algorithm, this paper proposes a computer mathematical model based on the combination of an improved genetic algorithm and mobile computing. Combined with the least square method, MATLAB software is used to solve the equations, determine the range of parameters, and solve the estimation parameter range and identification problems. The improved genetic algorithm combined with mobile computing and least square method to establish a mathematical model greatly increased the individual search space and increased the operation rate of 90% compared to the basic genetic algorithm or mobile computing. The results show that the improved genetic algorithm and mobile computing have a certain ability to identify the optimal solution and greatly improve the work efficiency.

2012 ◽  
Vol 178-181 ◽  
pp. 1790-1796 ◽  
Author(s):  
Ying Wu ◽  
Zi Bo Meng ◽  
Min Peng

In this paper, we research the problem of transportation routing for fresh food. We analyzed the limit of soft and hard time windows in transportation and formed the time window with fuzzy appointment based on customer satisfaction. The optimization of transportation routes mathematical model was structured. The improved genetic algorithm has been applied to matlab progam. This progam has found the optimal solution in the model. We used a case to prove the feasibility of the model and the algorithm. It has twelve customers and one DC need to transport services. The mathematical model is to simulate the transport of fresh food within realistic.The transportation routing is designed to improve customer satisfaction and reduce transportation costs.


Author(s):  
Morteza Madhkhan ◽  
Mohammad Reza Baradaran

Genetic Algorithm (GA) is one of the most widely used optimization algorithms. This algorithm consists of five stages, namely population generation, crossover, mutation, evaluation, and selection. This study presents a modified version of GA called Improved Genetic Algorithm (IGA) for the optimization of steel frame designs. In the IGA, the rate of convergence to the optimal solution is increased by splitting the population generation process to two stages. In the first stage, the initial population is generated by random selection of members from among AISC W-shapes. The generated population is then evaluated in another stage, where the member that does not satisfy the design constraints are replaced with stronger members with larger cross sectional area. This process continues until all design constraints are satisfied. Through this process, the initial population will be improved intelligently so that the design constraints fall within the allowed range. For performance evaluation and comparison, the method was used to design and optimize 10-story and 24-story frames based on the LRFD method as per AISC regulations with the finite element method used for frame analysis. Structural analysis, design, and optimization were performed using a program written with MATLAB programming language. The results show that using the proposed method (IGA) for frame optimization reduces the volume of computations and increases the rate of convergence, thus allowing access to frame designs with near-optimal weights in only a few iterations. Using the IGA also limits the search space to the area of acceptable solutions.


Author(s):  
Keshavamurthy B. N ◽  
Asad Mohammed Khan ◽  
Durga Toshniwal

Classification is the supervised learning technique of data mining which is used to extract hidden useful knowledge over a large volume of databases by predicting the class values based on the predicting attribute values. Of the various techniques, the most widely talked ones include decision tree, probabilistic model and evolutionary algorithms. Recently, the probabilistic and evolutionary techniques are most worked upon, because of the fact that probabilistic models yields high accuracy when there is no attribute dependency in the existing problem and evolutionary algorithms are used to obtain optimal solution over a large search space very quickly when there is less information known about a problem and problem posses attribute dependency. Though there are tradeoffs in each model still there are scopes to improve upon the existing. The proposed approach improves the evolutionary technique such as genetic algorithm by improving the fitness function parameters. Also, in this we compare the genetic algorithm results with Naïve Bayes algorithm results. For the experimental work we have used the nursery data set taken from the UCI Machine Learning Repository.


2013 ◽  
Vol 805-806 ◽  
pp. 716-720
Author(s):  
Tao Xu ◽  
Tian Long Shao ◽  
Dong Fang Zhang

Combined with the contents of the study-PSS low-pass link parameter identification. Least-squares method is selected. Using least-square method for PSS low-pass link mathematical model are also deduced. For the results, because of the mathematical model is solving nonlinear equations, cannot used by the Newton method directly. So we choose to use Newton iterations, with this feature, choose to use MATLAB software to solve the equation. Identification of the use of MATLAB software lags after the PSS parameters obtained recognition results compared with national standards, identifying and verifying the practicability.


2011 ◽  
Vol 55-57 ◽  
pp. 2092-2098
Author(s):  
You Xin Luo ◽  
Qi Yuan Liu ◽  
Xiao Yi Che ◽  
Bin Zeng

The forward displacement analysis of parallel mechanism is attributed to find the solutions of complicated nonlinear equations and it is a very difficult process. Taking chaotic sequences as the initial values of the damp least square method, we can find all the solutions of equations quickly. Making use of existing chaos system and discovering new chaos system to generate chaotic sequences with good properties is the key to the damp least square method based on Chaos sequences. Based on utilizing hyper-chaotic Hénon mapping to obtain initial points, a new method of finding all real number solutions of the nonlinear questions is proposed. Using cosine matrix method, the author established the mathematical model of forward displacement for the generalized 3SPS-3CCS parallel robot mechanism and a numerical example is given. Compared to the quaternion method building mathematical model, the result shows cosine matrix method building mathematical model and hyper-chaotic damp least square method to find solution is brief and high calculation efficiency as the calculation is done in real number range. The proposed method has universality which can be used in forward displacement of other parallel mechanism.


2017 ◽  
Vol 21 ◽  
pp. 255-262 ◽  
Author(s):  
Mazin Abed Mohammed ◽  
Mohd Khanapi Abd Ghani ◽  
Raed Ibraheem Hamed ◽  
Salama A. Mostafa ◽  
Mohd Sharifuddin Ahmad ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjin Liu ◽  
Xihong Chen ◽  
Yu Zhao

A prototype filter design for FBMC/OQAM systems is proposed in this study. The influence of both the channel estimation and the stop-band energy is taken into account in this method. An efficient preamble structure is proposed to improve the performance of channel estimation and save the frequency spectral efficiency. The reciprocal of the signal-to-interference plus noise ratio (RSINR) is derived to measure the influence of the prototype filter on channel estimation. After that, the process of prototype filter design is formulated as an optimization problem with constraint on the RSINR. To accelerate the convergence and obtain global optimal solution, an improved genetic algorithm is proposed. Especially, the History Network and pruning operator are adopted in this improved genetic algorithm. Simulation results demonstrate the validity and efficiency of the prototype filter designed in this study.


Sign in / Sign up

Export Citation Format

Share Document