scholarly journals Spectroscopic Determination of Fluoride Using Eriochrome Black T (EBT) as a Spectrophotometric Reagent from Groundwater

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Atinafu G/Mariam ◽  
Abebe Diro ◽  
Tsegaye Girma Asere ◽  
Demelash Jado ◽  
Fekadu Melak

Fluoride health problem is a great concern worldwide, most often as a result of groundwater intake. Thus, determination of fluoride is vital to take appropriate measures upon fluoride contamination of water. Potentiometric method of analysis is reliable for the determination of fluoride in various samples. In addition, spectroscopic methods are found important to quantify fluoride levels from water; however, several factors hinder its easier determination. Among the bottlenecks, the use of toxic chemicals and tedious steps in preparing chemicals (e.g., SPADNS method) are to mention a few. In this study, a spectrophotometric method was developed for the determination of fluoride from groundwater using Eriochrome Black T (EBT) as a spectroscopic reagent. Experimental parameters that influence the determination of fluoride including ligand type, kinetics, pH, and ligand-to-metal ratio were assayed. Evaluation of fluoride levels showed that Beer–Lambert’s law is obeyed in the range of 0.3–5.0 mg/L at 544 nm. The calibration curve, resulting in good linearity (R2 = 0.9997), was considered during quantitative analysis of the samples and in the spiking analysis. The limits of detection (LOD) and quantification (LOQ) of the method were found to be 0.19 and 0.64 mg/L, respectively. The precision studied in terms of intraday and interday at three concentration levels showed less than 5.4% RSD. Applicability of the method was investigated by analyzing groundwater samples spiked with fluoride standards, and satisfactory recoveries in the range of 98.18–111.4 were demonstrated. The developed spectrophotometric method has been successfully applied for fluoride determinations in groundwater samples. Thus, it could be used as an attractive alternative for the determination of fluoride from groundwater.

1994 ◽  
Vol 188 (6) ◽  
pp. 463-470 ◽  
Author(s):  
N. L. Sreenivasan ◽  
T. G. Srinivasan ◽  
P. R. Vasudeva Rao

2014 ◽  
Vol 26 (10) ◽  
pp. 2992-2996
Author(s):  
Nawal A. Alarfaj ◽  
Reda A. Ammar ◽  
Maha F. El-Tohamy

2017 ◽  
Vol 36 (3) ◽  
pp. 37 ◽  
Author(s):  
Ramazan Gürkan ◽  
Halil İbrahim Ulusoy ◽  
Mehmet Akçay

A sensitive and relatively selective spectrophotometric method is proposed for the rapid determination of uranium using Eriochrome Black T (EBT) being a 2,2’-dihydroxy azo benzene derivative metal indicator in the presence of cationic surfactant of N-cetyl N,N,N-trimethylammonium bromide (CTAB). The complex formation reaction between EBT and uranyl ion, UO2 2+ is instantaneous in presence of NH3/NH4Cl buffer at pH 9.5 and the absorbance as analytical signal remains stable for over 6 h. CTAB as cationic surfactant and polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether, octyl phenol ethoxylate (Triton X-100) as nonionic surfactant are used for improving the sensitivity and solubility of the analytical system, respectively. The proposed method allows the determination of uranium in the concentration range of 0.025-2 μg mL–1 with a molar absorption coefficient of 92440.60 L mol–1 cm–1 and Sandell’s sensitivity of 2.92 μg cm2- in micellar medium while it allows the determination of uranium in the concentration range of 0.25-2.5 μg mL–1 with a molar absorption coefficient of 57019.44 L mol–1 cm–1 and Sandell’s sensitivity of 4.74 μg cm2- at 565 nm in water. The method has a detection limit of 4.60 μg L–1 (CDL: 3Sb/m) at an analytical measurement wavelength of 637 nm with a bathochromic shift of 72 nm. The selectivity of chelating reagent was improved by the use of a mixture containing ethylenediaminetetraacetic acid (EDTA), sulfosalycylic acid and NaF as masking agent. The proposed method has been successfully applied to the determination of uranium at trace levels in different environmental water samples such as tap-water, natural springwater and river-water. The precision (with coefficient of variation of 1.85%) and the accuracy obtained were highly satisfactory. In order to test the accuracy and validation of the method, the certified reference material (TMDA-70; fortified lake water sample) was also analyzed. It was found that the found and the certified values were in good agreement for validating the surfactant enhanced-spectrophotometric method.


Author(s):  
RUAA MUAYAD MAHMOOD ◽  
HAMSA MUNAM YASSEN ◽  
SAMAR , NAJWA ISSAC ABDULLA AHMED DARWEESH ◽  
NAJWA ISSAC ABDULLA

Simple, rapid and sensitive extractive spectrophotometric method is presented for the determination of glibenclamide (Glb) based on the formation of ion-pair complex between the Glb and anionic dye, methyl orange (MO) at pH 4. The yellow colored complex formed was quantitatively extracted into dichloromethane and measured at 426 nm. The colored product obeyed Beer’s law in the concentration range of (0.5-40) μg.ml-1. The value of molar absorptivity obtained from Beer’s data was found to be 31122 L.mol-1.cm-1, Sandell’s sensitivity value was calculated to be 0.0159 μg.cm-2, while the limits of detection (LOD) and quantification (LOQ) were found to be 0.1086 and 0.3292 μg.ml-1, respectively. The stoichiometry of the complex created between the Glb and MO was 1:1 as determined via Job’s method of continuous variation and mole ratio method. The method was successfully applied for the analysis of pharmaceutical formulation.


Sign in / Sign up

Export Citation Format

Share Document