scholarly journals A Novel Vision-Based PRPL Multistage Image Processing Algorithm for Autonomous Aerial Refueling

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ling Wu ◽  
Yongrong Sun ◽  
Kedong Zhao ◽  
Xiyu Fu

Autonomous aerial refueling (AAR) technology can increase the flight endurance of unmanned air vehicles (UAVs) effectively. Drogue detection and target tracking method are significant for probe-drogue refueling system in the docking stage. This paper proposes a novel vision-based multistage image processing algorithm of drogue detection and target tracking for AAR. This algorithm divides the whole task into four stages: preprocessor, recognizer, predictor, and locker (PRPL). The adaptive threshold segmentation (ATS) algorithm and support vector machine (SVM) classifier are utilized in preprocessor and recognizer for drogue detection. An improved kernelized correlation filter (IKCF) tracking algorithm and scale adaptive method by window position as well as image resolution adjusted are adopted in predictor and locker for target tracking in complex dynamic environments. Finally, the proposed PRPL multistage image processing strategy is tested using an autonomous aerial refueling testbed. The results indicate that the proposed algorithm achieves high precision, good reliability, and real-time capability compared with conventional algorithms. The average processing time is within 11 ms in various environments, which can meet the requirement for drogue detection and tracking in AAR.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Soo Hyun Park ◽  
Sang Ha Noh ◽  
Michael J. McCarthy ◽  
Seong Min Kim

AbstractThis study was carried out to develop a prediction model for soluble solid content (SSC) of intact chestnut and to detect internal defects using nuclear magnetic resonance (NMR) relaxometry and magnetic resonance imaging (MRI). Inversion recovery and Carr–Purcell–Meiboom–Gill (CPMG) pulse sequences used to determine the longitudinal (T1) and transverse (T2) relaxation times, respectively. Partial least squares regression (PLSR) was adopted to predict SSCs of chestnuts with NMR data and histograms from MR images. The coefficient of determination (R2), root mean square error of prediction (RMSEP), ratio of prediction to deviation (RPD), and the ratio of error range (RER) of the optimized model to predict SSC were 0.77, 1.41 °Brix, 1.86, and 11.31 with a validation set. Furthermore, an image-processing algorithm has been developed to detect internal defects such as decay, mold, and cavity using MR images. The classification applied with the developed image processing algorithm was over 94% accurate to classify. Based on the results obtained, it was determined that the NMR signal could be applied for grading several levels by SSC, and MRI could be used to evaluate the internal qualities of chestnuts.


1995 ◽  
Vol 11 (5) ◽  
pp. 751-757 ◽  
Author(s):  
J. A. Throop ◽  
D. J. Aneshansley ◽  
B. L. Upchurch

2011 ◽  
Vol 36 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Kwang-Wook Seo ◽  
Hyeon-Tae Kim ◽  
Dae-Weon Lee ◽  
Yong-Cheol Yoon ◽  
Dong-Yoon Choi

2017 ◽  
Vol 5 (1) ◽  
pp. 28-42 ◽  
Author(s):  
Iryna Borshchova ◽  
Siu O’Young

Purpose The purpose of this paper is to develop a method for a vision-based automatic landing of a multi-rotor unmanned aerial vehicle (UAV) on a moving platform. The landing system must be highly accurate and meet the size, weigh, and power restrictions of a small UAV. Design/methodology/approach The vision-based landing system consists of a pattern of red markers placed on a moving target, an image processing algorithm for pattern detection, and a servo-control for tracking. The suggested approach uses a color-based object detection and image-based visual servoing. Findings The developed prototype system has demonstrated the capability of landing within 25 cm of the desired point of touchdown. This auto-landing system is small (100×100 mm), light-weight (100 g), and consumes little power (under 2 W). Originality/value The novelty and the main contribution of the suggested approach are a creative combination of work in two fields: image processing and controls as applied to the UAV landing. The developed image processing algorithm has low complexity as compared to other known methods, which allows its implementation on general-purpose low-cost hardware. The theoretical design has been verified systematically via simulations and then outdoors field tests.


2021 ◽  
Vol 36 (7) ◽  
pp. 1042-1050
Author(s):  
Lu ZHAO ◽  
◽  
Jian-ping WEN ◽  
Wei MO ◽  
Shi-rui CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document