scholarly journals Oridonin Alters Hepatic Urea Cycle via Gut Microbiota and Protects against Acetaminophen-Induced Liver Injury

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mu-keng Hong ◽  
Hai-hua Liu ◽  
Gui-hong Chen ◽  
Jun-qing Zhu ◽  
Song-yuan Zheng ◽  
...  

Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the western world. Oridonin (OD), which is the major active ingredient of the traditional Chinese medicine Rabdosia rubescens, reportedly exerts anti-inflammatory and antioxidative effects. Here, we first find that OD protects against APAP-induced hepatotoxicity. The results of hepatic tissue-associated RNA-seq and metabolomics showed that the protective effects of OD were dependent upon urea cycle regulation. And such regulation of OD is gut microbiota partly dependent, as demonstrated by fecal microbiota transplantation (FMT). Furthermore, using 16S rRNA sequencing, we determined that OD significantly enriched intestinal Bacteroides vulgatus, which activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to regulate redox homeostasis against APAP by urea cycle. In conclusion, our study suggests that the Bacteroides vulgatus-urea cycle-Nrf2 axis may be a potential target for reducing APAP-induced liver injury, which is altered by OD.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zeyu Zhao ◽  
Zhengchang Guo ◽  
Zhengliang Yin ◽  
Yue Qiu ◽  
Bo Zhou

Background: Intestinal damage caused by intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) can lead to the ectopic gut microbiota, which can contribute to liver injury via portal veins. Therefore, it is speculated that gut microbiota disorder caused by IAH/ACS may result in liver injury. The relationship between gut microbiota and IAH/ACS-related liver injury was investigated in this study.Methods: A model of IAH was established in rats, and 16S rRNA sequencing was analyzed for gut microbiota in the feces of rats. The elimination of gut microbiota was completed by antibiotics gavage, and fecal microbiota transplantation (FMT) was used to change the composition of gut microbiota in rats.Results: In addition to the traditional cause of liver blood vessel compression, liver injury caused by IAH was also associated with gut microbiota dysbiosis. Gut microbiota clearance can relieve liver injury caused by IAH, while FMT from IAH-intervened rats can aggravate IAH-related liver injury.Conclusion: The gut microbiota was one of the most important factors contributing to the IAH-related liver injury, and the JNK/p38 signaling pathway was activated in this process.


2021 ◽  
Author(s):  
Suyan Li ◽  
Fenyan Zhang ◽  
Yiguang Lin ◽  
Xiaoli Niu ◽  
Jian Lv ◽  
...  

Abstract Background Accumulating evidence suggests that the intestinal flora is involved in many neurodegenerative diseases. Sepsis can lead to severe intestinal flora imbalance and brain dysfunction. In this study, we investigated Sennoside A may relieve lipopolysaccharide(LPS)-associated encephalopathy via its effect on the gut microbiota in rats. Methods Adult male Sprague-Dawley (SD) rats and germ free (GF) rats were used. The ordinary and germ free SD rats were adopted as a LPS-associated encephalopathy model with or without Sennoside A administration. We investigated gut microbiota diversity and structure, conducted electroencephalograms (EEG) and measured the levels of TNF-α, IL-1β and IL-6 in the cortexes of Sprague Dawley (SD) rats with or without Sennoside A administration. Horizontal fecal microbiota transplantation (FMT) and germ-free rats were used to confirm the important roles of gut microbiota in the mitigation of LPS-associated encephalopathy in rats after Sennoside A supplementation. Results We found that Sennoside A treatment markedly improved brain function in septic rats including decreased ratios of abnormal EEG and lowered levels of TNF-α, IL-1β, and IL-6 in the rat cortexes. While the gut microbiota changed in septic SD rats, Sennoside A improved gut microbial composition, which might mediate its brain protective effects in sepsis. Sennoside A also reduced inflammation in the cortexes of septic rats via gut microbiota improvement. In germ-free rats that received lipopolysaccharide(LPS),Sennoside A could not lower the ratios of abnormal EEG, and could not alleviate TNF-α, IL-1β, and IL-6 levels in the rats’ cortexes. FMT lowered the ratios of abnormal EEG and alleviate TNF-α, IL-1β, and IL-6 levels in rats’ cortexes, which confirmed our hypothesis that the effect of Sennoside A on the improvement of LPS-associated encephalopathy through gut microbiota. Conclusion Our data confirm our hypothesis that Sennoside A likely exerts its brain protective effects through gut microbiota alteration.


2020 ◽  
Author(s):  
Cherng-Shyang Chang ◽  
Yi-Chu Liao ◽  
Chih-Ting Huang ◽  
Chiao-Mei Lin ◽  
Chantal Hoi Yin Cheung ◽  
...  

Abstract Background: Leaky gut and microbiota dysbiosis have been linked to many chronic inflammatory diseases. Strengthening the gut epithelial barrier is a novel but overlooked strategy for management of gut microbiota-associated illnesses. Results: Using the dextran sulfate sodium (DSS)-induced gut barrier injury-based colitis model, we found that DSS-induced weight loss, rectal bleeding, and colonic epithelium damage were ameliorated in dual-specificity phosphatase 6 (Dusp6)-deficient mice. These protective effects could be attributed to the enhanced colon barrier integrity conferred by Dusp6-deficiency. Consistently, DUSP6 mutation in Caco-2 cells elevated transepithelial electrical resistance, enhanced tight-junctions, and increased expression of microvilli-associated genes. DUSP6-deficient Caco-2 cells also showed increased mitochondrial oxygen consumption accompanied by altered glucose metabolism and decreased glycolysis. Remarkably, our microbiome analysis found that Dusp6-deficient mice harbored fewer pathobionts and facultative anaerobes and more obligate anaerobes than wild-type mice after DSS treatment. Our cohousing and fecal microbiota transplantation experiments demonstrated that the gut/fecal microbiota derived from Dusp6-deficient mice also conferred protection against colitis.Conclusion: We have thus identified Dusp6 deficiency as beneficial in enhancing gut barrier integrity, elevating epithelial phosphoxidation, and maintaining the gut microbiota eubiosis necessary to protect against colitis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yanyan Yu ◽  
Ying Cao ◽  
Wenling Huang ◽  
Yanxia Liu ◽  
Ying Lu ◽  
...  

Background: Polycystic ovary syndrome (PCOS), one of the most common endocrine diseases in women of childbearing age, has been found to be accompanied by changes in the gut microbiota. The Bu Shen Yang Xue formula (BSYXF) is a traditional Chinese medicine widely used for the treatment of PCOS. This study aimed to investigate whether the protective effects of β-sitosterol, the main active ingredient of BSYXF, on PCOS was mediated by regulating gut microbiota.Methods: The presence of β-sitosterol in BSYXF was detected by liquid chromatography-mass spectrometry. The PCOS-like mouse model was induced by dehydroepiandrosterone. The fecal supernatant of β-sitosterol-treated mice was prepared for fecal microbiota transplantation (FMT). Body weight and wet weight of the uterus and ovary of the mice were recorded for organ index calculation. Hematoxylin and eosin stain was used to assess the endometrial morphology and microenvironment changes. Expression of endometrial receptivity markers cyclooxygenase-2 (COX-2), Integrin ανβ3, leukemia inhibitory factor (LIF), and homeobox A10 (HOXA10) in the endometrium were determined by immunohistochemistry and western blot analysis. Enzyme-linked immunosorbent assay was employed to detect the expression of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), and testosterone (T) in the serum. The diversity of gut microbiota was examined by 16S rDNA gene sequencing.Results: With the treatment of β-sitosterol and β-sitosterol-FMT, the uterine index of PCOS-like mice increased, the ovarian index decreased, levels of COX-2, LH and T decreased, and levels of Integrin ανβ3, LIF, HOXA10, FSH, and P increased. Under β-sitosterol treatment, the structure of the gut microbiota in PCOS-like mice was also changed.Conclusion: β-sitosterol regulates the endometrial receptivity of PCOS and harmonizes the sex hormone balance, which may be related to the changes in the structure and composition of gut microbiota, thus affecting the pathological process of PCOS.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 734
Author(s):  
Gwangbeom Heo ◽  
Yunna Lee ◽  
Eunok Im

Inflammatory mediators modulate inflammatory pathways during the development of colorectal cancer. Inflammatory mediators secreted by both immune and tumor cells can influence carcinogenesis, progression, and tumor metastasis. The gut microbiota, which colonize the entire intestinal tract, especially the colon, are closely linked to colorectal cancer through an association with inflammatory mediators such as tumor necrosis factor, nuclear factor kappa B, interleukins, and interferons. This association may be a potential therapeutic target, since therapeutic interventions targeting the gut microbiota have been actively investigated in both the laboratory and in clinics and include fecal microbiota transplantation and probiotics.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


Author(s):  
Jong-Hwa Kim ◽  
Kiyoung Kim ◽  
Wonyong Kim

AbstractThe pathogenesis of atopic dermatitis (AD) involves complex factors, including gut microbiota and immune modulation, which remain poorly understood. The aim of this study was to restore gut microbiota via fecal microbiota transplantation (FMT) to ameliorate AD in mice. FMT was performed using stool from donor mice. The gut microbiota was characterized via 16S rRNA sequencing and analyzed using Quantitative Insights into Microbial Ecology 2 with the DADA2 plugin. Gut metabolite levels were determined by measuring fecal short-chain fatty acid (SCFA) contents. AD-induced allergic responses were evaluated by analyzing blood parameters (IgE levels and eosinophil percentage, eosinophil count, basophil percentage, and monocyte percentage), the levels of Th1 and Th2 cytokines, dermatitis score, and the number of mast cells in the ileum and skin tissues. Calprotectin level was measured to assess gut inflammation after FMT. FMT resulted in the restoration of gut microbiota to the donor state and increases in the levels of SCFAs as gut metabolites. In addition, FMT restored the Th1/Th2 balance, modulated Tregs through gut microbiota, and reduced IgE levels and the numbers of mast cells, eosinophils, and basophils. FMT is associated with restoration of gut microbiota and immunologic balance (Th1/Th2) along with suppression of AD-induced allergic responses and is thus a potential new therapy for AD.


2021 ◽  
Vol 11 (1) ◽  
pp. 390
Author(s):  
Beom-Rak Choi ◽  
Il-Je Cho ◽  
Su-Jin Jung ◽  
Jae-Kwang Kim ◽  
Dae-Geon Lee ◽  
...  

Lemon balm and dandelion are commonly used medicinal herbs exhibiting numerous pharmacological activities that are beneficial for human health. In this study, we explored the protective effects of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (MLD) on carbon tetrachloride (CCl4)-induced acute liver injury in mice. CCl4 (0.5 mL/kg; i.p.) injection inhibited body weight gain and increased relative liver weight. Pre-administration of MLD (50–200 mg/kg) for 7 days prevented these CCl4-mediated changes. In addition, histopathological analysis revealed that MLD synergistically alleviated CCl4-mediated hepatocyte degeneration and infiltration of inflammatory cells. MLD decreased serum aspartate aminotransferase and alanine transferase activities and reduced the number of liver cells that stained positive for cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase, suggesting that MLD protects against CCl4-induced hepatic damage via the inhibition of apoptosis. Moreover, MLD attenuated CCl4-mediated lipid peroxidation and protein nitrosylation by restoring impaired hepatic nuclear factor erythroid 2-related factor 2 mRNA levels and its dependent antioxidant activities. Furthermore, MLD synergistically decreased mRNA and protein levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the liver. Together, these results suggest that MLD has potential for preventing acute liver injury by inhibiting apoptosis, oxidative stress, and inflammation.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 145
Author(s):  
Julio Plaza-Díaz ◽  
Patricio Solis-Urra ◽  
Jerónimo Aragón-Vela ◽  
Fernando Rodríguez-Rodríguez ◽  
Jorge Olivares-Arancibia ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).


Brain ◽  
2021 ◽  
Author(s):  
Qing Wang ◽  
Yuqi Luo ◽  
K Ray Chaudhuri ◽  
Richard Reynolds ◽  
Eng-King Tan ◽  
...  

Abstract Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.


Sign in / Sign up

Export Citation Format

Share Document