scholarly journals The Prevalence of Shiga Toxin-Producing Escherichia coli and Enteropathogenic Escherichia coli Isolated from Raw Chicken Meat Samples

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Omid Zarei ◽  
Leili Shokoohizadeh ◽  
Hadi Hossainpour ◽  
Mohammad Yousef Alikhani

Background. Shiga toxin-producing Escherichia coli (STEC) is known as a crucial zoonotic food-borne pathogen. A total of 257 raw chicken meat samples were collected from different markets in Hamadan, west of Iran, from January 2016 to May 2017. Materials and Methods. The samples were cultured in selective and differential culture media, and the virulence genes of E. coli isolates were analyzed by PCR assay. The antibiotic resistance patterns of E. coli isolates were determined by the disk diffusion method. The genetic relatedness of the E. coli O157 isolates was analyzed by ERIC-PCR. Results. In total, 93 (36% ± 3.12) of the isolates were identified as E. coli in this study. Based on serological and microbiological tests, 36 (38.7% ± 9.9), 7 (7.5% ± 5.35), and 12 (12.9% ± 6.81) of the E. coli isolates were characterized as STEC, enteropathogenic E. coli (EPEC), and attaching and effacing E. coli (AEEC) strains, respectively. A high level of resistance to nalidixic acid (91.4% ± 5.7), tetracycline (89.2% ± 6.31), ampicillin (82.8% ± 7.67), and trimotoprime-sulfametoxazole (71% ± 9.22) was detected among the E. coli isolates. The analysis of the ERIC-PCR results showed five different ERIC types among the E. coli O157 isolates. Conclusions. Based on our findings, control and check-up of poultry meats should be considered as a crucial issue for public health.

2019 ◽  
Author(s):  
omid zarei ◽  
Leili Shokoohizadeh ◽  
Hadi Hossainpour ◽  
Mohammad Yousef Alikhani

Abstract Objective: Shiga toxin producing Escherichia coli (STEC) has known as a crucial zoonotic food borne pathogen. A total of 257 row chicken meat samples were collected from different markets in Hamadan city from January 2016 to May 2017. Samples were cultured on selective and differential culture media, and the virulence genes of E. coli isolates were analyzed by PCR assay. The antibiotic resistance patterns of E. coli isolates were determined by disk diffusion method. The genetic relatedness of STEC isolates were analyzed by ERIC-PCR. Results: Totally, 93(36%) of isolates were identified as E. coli in this current study. According serological and microbiological tests, 5(5.3%), 31(33.3%) and 7(7.5%) of E. coli isolates, characterized as Enterohemorrhagic E. coli (EHEC), STEC and attaching and effacing E. coli (AEEC) strains, respectively. High level resistance to tetracycline (89.8), ampicillin (82.8%) and sulfametoxazole-trimotoprime (71%) were detected among E. coli isolates. Analysis of ERIC-PCR results showed five different ERIC types among EHEC isolates. Based on our findings, chicken meat identified as a sources of STEC strains, therefore, the controlling and checkup the chicken meats for the resistance and virulent strains of E. coli should be consider as a crucial issues in public health.


2019 ◽  
Author(s):  
omid zarei ◽  
Leili Shokoohizadeh ◽  
Hadi Hossainpour ◽  
Mohammad Yousef Alikhani

Abstract Objective: Shiga toxin-producing Escherichia coli (STEC) is known as a crucial zoonotic foodborne pathogen. Totally, 257 raw chicken meat were collected from markets in Hamadan, west of Iran. The samples were cultured on selective culture media and the virulence genes of E. coli isolates were analyzed by PCR. The antibiotic resistance patterns were determined by the disk diffusion method. The genetic relatedness of the E. coli O157 isolates was analyzed by ERIC-PCR. Results: Totally, 93 (36%; 95% CI 41.9- 30.1%) isolates were identified as E. coli. Based on microbiological tests, 36 (38.7%; 95% CI 48.6-28.8), 7 (7.5%; 95% CI 12.8-2.2%), and 12 (12.9%; 95% CI 19.7- 6.1%) of the E. coli isolates were characterized as STEC, Enteropathogenic E. coli, and attaching and effacing E. coli (AEEC) strains, respectively. A high level of resistance to nalidixic acid (91.4%; 95% CI 97.1- 85.7%), tetracycline (89.8%; 95% CI 96.2-83.5%), ampicillin (82.8%; 95% CI 90.2-75.1%), and sulfametoxazole-trimotoprime (71%; 95% CI 80.2-61.8%) was detected among the E. coli isolates. The analysis of ERIC-PCR results showed five different ERIC types among the E. coli O157 isolates. Based on findings, control and check-up of poultry meats should be considered as a crucial issue for public health.


2019 ◽  
Author(s):  
omid zarei ◽  
Leili Shokoohizadeh(Former Corresponding Author) ◽  
Hadi Hossainpour ◽  
Mohammad Yousef Alikhani(New Corresponding Author)

Abstract Objective: Shiga toxin-producing Escherichia coli (STEC) is known as a crucial zoonotic foodborne pathogen. A total of 257 raw chicken meat samples were collected from different markets in Hamadan, west of Iran, from January 2016 to May 2017. The samples were cultured on selective and differential culture media and the virulence genes of E. coli isolates were analyzed by PCR assay. The antibiotic resistance patterns of E. coli isolates were determined by the disk diffusion method. The genetic relatedness of the E. coli O157 isolates was analyzed by ERIC-PCR. Results: In total, 93 (36%) of the isolates were identified as E. coli in this study. Based on serological and microbiological tests, 36 (38.7%), 7 (7.5%), and 12 (12.9%) of the E. coli isolates were characterized as STEC, Enteropathogenic E. coli (EPEC), and attaching and effacing E. coli (AEEC) strains, respectively. A high level of resistance to nalidixic acid (91.4%), tetracycline (89.8), ampicillin (82.8%), and sulfametoxazole-trimotoprime (71%) was detected among the E. coli isolates. The analysis of the ERIC-PCR results showed five different ERIC types among the E. coli O157 isolates. Based on our findings, control and check-up of poultry meats should be considered as a crucial issue for public health.


2019 ◽  
Author(s):  
omid zarei ◽  
Leili Shokoohizadeh ◽  
Hadi Hossainpour ◽  
Mohammad Yousef Alikhani

Abstract Objective: Shiga toxin-producing Escherichia coli (STEC) is known as a crucial zoonotic foodborne pathogen. Totally, 257 raw chicken meat were collected from markets in Hamadan, west of Iran. The samples were cultured on selective media and the virulence genes of E. coli isolates were analyzed by PCR. The antibiotic resistance patterns were determined by the disk diffusion method. The genetic relatedness of the E. coli O157 isolates was analyzed by ERIC-PCR. Results: Totally, 93 (36%; 95% CI 41.9- 30.1%) isolates were identified as E. coli. Based on microbiological tests, 36 (38.7%; 95% CI 48.6-28.8), 7 (7.5%; 95% CI 12.8-2.2%), and 12 (12.9%; 95% CI 19.7- 6.1%) of the E. coli isolates were characterized as STEC, Enteropathogenic E. coli, and attaching and effacing E. coli (AEEC) strains, respectively. A high level of resistance to nalidixic acid (91.4%; 95% CI 97.1- 85.7%), tetracycline (89.8%; 95% CI 96.2-83.5%), ampicillin (82.8%; 95% CI 90.2-75.1%), and sulfametoxazole-trimotoprime (71%; 95% CI 80.2-61.8%) was detected among the E. coli isolates. The analysis of ERIC-PCR results showed five different ERIC types among the E. coli O157 isolates. Based on findings. Control and check-up of poultry meats should be considered as a crucial issue for public health.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kiandokht Babolhavaeji ◽  
Leili Shokoohizadeh ◽  
Morteza Yavari ◽  
Abbas Moradi ◽  
Mohammad Yousef Alikhani

Background. The aims of the current study are the identification of O157 and non-O157 Shiga Toxin-Producing Escherichia coli (STEC) serogroups isolated from fresh raw beef meat samples in an industrial slaughterhouse, determination of antimicrobial resistance patterns, and genetic linkage of STEC isolates. Materials and Methods. A total of 110 beef samples were collected from the depth of the rump of cattle slaughtered at Hamadan industrial slaughterhouse. After detection of E. coli isolates, STEC strains were identified according to PCR for stx1, stx2, eaeA, and hlyA virulence genes, and STEC serogroups (O157 and non-O157) were identified by PCR. The genetic linkage of STEC isolates was analyzed by the ERIC- (Enterobacterial Repetitive Intergenic Consensus-) PCR method. The antimicrobial susceptibility of STEC isolates was detected by the disk diffusion method according to CLSI guidelines. Results. Among 110 collected beef samples, 77 (70%) were positive for E. coli. The prevalence of STEC in E. coli isolates was 8 (10.4%). The overall prevalence of O157 and non-O157 STEC isolates was 12.5% (one isolate) and 87.5% (7 isolates), respectively. The hemolysin gene was detected in 25% (2 isolates) of STEC strains. Evaluation of antibiotic resistance indicated that 100% of STEC isolates were resistant to ampicillin, ampicillin-sulbactam, amoxicillin-clavulanic acid, and cefazolin. Resistance to tetracycline and ciprofloxacin was detected in 62.5% and 12.5% of isolates, respectively. The analysis of the ERIC-PCR results showed five different ERIC types among the STEC isolates. Conclusion. The isolation of different clones STECs from beef and the presence of antibiotic-resistant isolates indicate that more attention should be paid to the hygiene of slaughterhouses.


Author(s):  
Farzad Esavand Heydari ◽  
Mojtaba Bonyadian ◽  
Hamdallah Moshtaghi ◽  
Masoud Sami

Background and Objectives: Enterohemorrhagic Escherichia coli (EHEC) causes bloody and non-bloody diarrhea, intestinal infection and extraintestinal complications in humans. This study aimed to isolate and evaluate the prevalence of E. coli O157: H7 and other Shiga toxin-producing E. coli (STEC) and identify the virulence genes (stx1, stx2, hly and eaeA) from patients with diarrhea. Also, the antibiotic resistance profile of the isolated strains was evaluated. Materials and Methods: A total of 100 stool samples were collected from patients with acute diarrhea referring to the hospital and clinics in Isfahan County, Iran. Phenotypic tests and PCR assay were used for detection of E. coli O157: H7 and other Shiga toxin-producing E. coli. The presence of virulence genes (stx1, stx2, hly and eaeA) were identified by PCR. The antibiotic resistance profile of the isolates was determined using the agar disk diffusion method. The results were analyzed descriptively by Sigma stat version 4 software. Results: Seventy - eight out of 100 samples (78%) were contaminated with E. coli. E. coli O157 was isolated from five samples (6.4%), of which only two strains (2.56%) were identified as E. coli O157: H7. According to the results, out of two E. coli O157: H7 isolates, one (50%) isolate contained eaeA and two isolates (100%) contained Stx1, Stx2, hlyA genes. Out of three (3.84%) E. coli O157: HN, one of the isolate (33.3%) contained stx1 and, two isolates (66.7%) were positive for hlyA genes. Also, the results revealed that six strains (7.69%) were non-O157: H7 STEC, of which two isolates (33.3%) contained stx1 and four isolates (66.7%) were positive for stx2 and hlyA genes. The results of antibiogram tests revealed that all of the STEC isolates (100%) were sensitive to imipenem followed by kanamycin, gentamicin and nitrofurantoin (91%). High resistance (54.5%) to ampicillin and ciprofloxacin was observed among the STEC isolates. Conclusion: The results of the current study showed that although the prevalence of E. coli O157: H7 was low among patients with diarrhea, the other STEC strains with relative resistance to antibiotics are more prevalent.


2019 ◽  
Vol 20 (1) ◽  
pp. 125
Author(s):  
Connie Januari ◽  
Mirnawati Bachrum Sudarwanto ◽  
Trioso Purnawarman

Antibiotic use in farm is spread widely to treat of poultry disease including therapy, supportive or preventive use and as afeed additive to improve chicken performance. The negative effects of antibiotic use can increase the level of bacterial resistance to antibiotics. This study aimed to investigate on antibiotic resistance in Escherichia coli isolated from chicken meat that were sold in Traditional Market of Bogor City. A total of 175 samples of chicken meat were taken by purposive sampling method, out of 175 found 50 positive samples of E. coli. The samples were subjected to E. coli examination and the isolated E. coli were tested for the antibiotic resistance using eight antibiotics, i.e., amoxicillin, cefotaxime, colistin, nalidixid acid, streptomycin, erythromycin, oxytetracillin, and tetracycline. The study was conducted by using the disk diffusion method on Muller-Hinton agar according to the Clinical and Laboratory Standards Institute guidelines. The study showed E. coli isolated from chicken meat were resistance towards amoxicilin (90%), colistin (94%), nalidixid acid (86%), streptomycin (98%), erythromycin (98%), oxytetracillin (84%), tetracycline (86%), and cefotaxime antibiotics (12%). The proportion of multidrugresistant was 99%. The higher of multidrug-resistant indicated the E. coli would be a threat to public and environmental health. 


2020 ◽  
Vol 83 (12) ◽  
pp. 2200-2208
Author(s):  
NAHLA O. ELTAI ◽  
HADI M. YASSINE ◽  
TAHRA EL-OBEID ◽  
SARA H. AL-HADIDI ◽  
ASMAA A. AL THANI ◽  
...  

ABSTRACT The spread of antibiotic resistance among bacterial strains has been associated with consumption of food contaminated with both pathogenic and nonpathogenic bacteria. The objective of this study was to determine the prevalence of antibiotic resistant Escherichia coli isolates in local and imported retail raw chicken meat in Qatar. A total of 270 locally produced (chilled) and imported (chilled or frozen) whole chicken carcasses were obtained from three Hypermarket stores in Qatar. The 216 E. coli isolates recovered from the chicken samples were subjected to antibiotic susceptibility testing with the disk diffusion method. Extended-spectrum β-lactamase (ESBL) production was evaluated with the double disk synergy test. Isolates harboring colistin resistance were identified with a multiplex PCR assay and DNA sequencing. Nearly 89% (192) of the 216 isolates were resistant to at least one of the 18 antibiotics tested. Isolates from local and imported chicken carcasses had relatively higher resistance to sulfamethoxazole (62% of isolates), tetracycline (59.7%), ampicillin and trimethoprim (52.3% each), ciprofloxacin (47.7%), cephalothin (45.4%), and colistin (31.9%). Less resistance was found to amoxicillin–clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%), piperacillin-tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers, and 137 (63.4%) were multidrug resistant. The percentages of multidrug-resistant, ESBL-producing, and colistin resistant isolates were significantly higher among isolates from local chilled than from imported chilled and frozen chicken samples. Our findings indicate the high prevalence of antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. HIGHLIGHTS


2020 ◽  
Vol 18 (6) ◽  
pp. 1091-1097
Author(s):  
Hisham N. Altayb ◽  
Eman Khalid Salih ◽  
Ehssan H. Moglad

Abstract This study aimed to detect the blaCTX-M group 1 in Escherichia coli (E. coli) isolated from drinking water in Khartoum State. Two hundred and eighty water samples were collected randomly from different areas, places, and sources from the state and examined for the presence of E. coli as a fecal contamination indicator. Isolation and identification of E. coli were performed using culture characteristics on different culture media and biochemical reactions. An antimicrobial sensitivity test was performed for all isolated E. coli using agar disk diffusion method. DNA was extracted by boiling method, and bacterial genomic DNA used as a template to detect blaCTX-M group 1 by PCR. Results showed 86 (30.7%) E. coli were isolated out of 280 water samples. Antimicrobial susceptibility testing revealed the highest resistant percentage was 59% for tetracycline, followed by 35% for gentamycin, while for chloramphenicol and cefotaxime was 22 and 20%, respectively. blaCTX-M group 1 was detected in about 40% of all isolates. This study concludes that drinking water in Khartoum State may be contaminated with feces and might be a possible source for transferring resistant bacteria. Thus, it may be one of the critical causes of increasing reports of antimicrobial resistance in Khartoum State.


2020 ◽  
Vol 13 (8) ◽  
pp. 1588-1593
Author(s):  
Zuhair Bani Ismail ◽  
Sameeh M. Abutarbush

Background and Aim: Mastitis is a common and economically important disease in dairy cattle. It remains one of the most common reasons for the extensive use of antimicrobials in dairy farms leading to the emergence of antimicrobial-resistant pathogens. The aim of this study was to determine the patterns of antimicrobial resistance of Escherichia coli isolates from bovine mastitis and to identify prominent antimicrobial resistance and virulence genes among isolated strains. Materials and Methods: Antimicrobial susceptibility testing against six antibiotic groups, including tetracyclines, aminoglycosides, beta-lactams, macrolides, sulfonamides, and fluoroquinolones was performed using the disk diffusion method. PCR was performed on resistant isolates to detect resistance and virulence genes using commercially available primers. Results: Out of 216 milk samples cultured, 14 samples yielded E. coli isolates. All isolates (100%) were resistant to ampicillin, amoxicillin, procaine penicillin, streptomycin, oxytetracycline, and sulfamethoxazole-trimethoprim. Only one isolate (7%) was sensitive to gentamicin, and all isolates (100%) were sensitive to enrofloxacin and ciprofloxacin. All isolates carried at least one resistance gene against one or more of the major antibiotic groups. All isolates carried the ereA, tetG, tetE, and tetB genes, followed by tetA (93%), ampC (86%), strA (86%), sul1 (78%), tetD (71%), tetC (57%), aadA (57%), and strB (36%). The lowest percentage of isolates carried bla1 (17%) and bla2 (12%) genes, and none of the isolates carried the qnrA gene. Most of the isolates (93%) carried the Shiga toxin 1 virulence gene, followed by complement resistance protein (79%), intimin (64%), Shiga toxin 2 (36%), cytotoxic necrotizing factor (35%), aerotaxis receptor (21%), and type 1 fimbriae (15%). Conclusion: Results of this study indicate that the high percentages of E. coli isolate from bovine mastitis are resistant to two or more of the major antibiotic groups, irrespective of the presence or absence of relevant resistance or virulence genes.


Sign in / Sign up

Export Citation Format

Share Document