scholarly journals Cooperative Target Search of UAV Swarm with Communication Distance Constraint

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ning Wang ◽  
Zhe Li ◽  
Xiaolong Liang ◽  
Ying Li ◽  
Feihu Zhao

This paper proposes a cooperative search algorithm to enable swarms of unmanned aerial vehicles (UAVs) to capture moving targets. It is based on prior information and target probability constrained by inter-UAV distance for safety and communication. First, a rasterized environmental cognitive map is created to characterize the task area. Second, based on Bayesian theory, the posterior probability of a target’s existence is updated using UAV detection information. Third, the predicted probability distribution of the dynamic time-sensitive target is obtained by calculating the target transition probability. Fourth, a customized information interaction mechanism switches the interaction strategy and content according to the communication distance to produce cooperative decision-making in the UAV swarm. Finally, rolling-time domain optimization generates interactive information, so interactive behavior and autonomous decision-making among the swarm members are realized. Simulation results showed that the proposed algorithm can effectively complete a cooperative moving-target search when constrained by communication distance yet still cooperate effectively in unexpected situations such as a fire.

2019 ◽  
Vol 49 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Haibin DUAN ◽  
Daifeng ZHANG ◽  
Yanming FAN ◽  
Yimin DENG

2021 ◽  
Author(s):  
Jon Gustav Vabø ◽  
Evan Thomas Delaney ◽  
Tom Savel ◽  
Norbert Dolle

Abstract This paper describes the transformational application of Artificial Intelligence (AI) in Equinor's annual well planning and maturation process. Well planning is a complex decision-making process, like many other processes in the industry. There are thousands of choices, conflicting business drivers, lots of uncertainty, and hidden bias. These complexities all add up, which makes good decision making very hard. In this application, AI has been used for automated and unbiased evaluation of the full solution space, with the objective to optimize the selection of drilling campaigns while taking into account complex issues such as anti-collision with existing wells, drilling hazards and trade-offs between cost, value and risk. Designing drillable well trajectories involves a sequence of decisions, which makes the process very suitable for AI algorithms. Different solver architectures, or algorithms, can be used to play this game. This is similar to how companies such as Google-owned DeepMind develop customized solvers for games such as Go and StarCraft. The chosen method is a Tree Search algorithm with an evolutionary layer on top, providing a good balance in terms of performance (i.e., speed) vs. exploration capability (i.e., it looks "wide" in the option space). The algorithm has been deployed in a full stack web-based application that allows users to follow an end-2-end workflow: from defining well trajectory design rules and constraints to running the AI engine and evaluating results to the optimization of multi-well drilling campaigns based on risk, value and cost objectives. The full-size paper describes different Norwegian Continental Shelf (NCS) use cases of this AI assisted well trajectory planning. Results to-date indicate significant CAPEX savings potential and step-change improvements in decision speed (months to days) compared to routine manual workflows. There are very limited real transformative examples of Artificial Intelligence in multi- disciplinary workflows. This paper therefore gives a unique insight how a combination of data science, domain expertise and end user feedback can lead to powerful and transformative AI solutions – implemented at scale within an existing organization.


Author(s):  
Pascale Zaraté

The subject of our research aims to support in the most suitable way the collaborative decision-making process. Several scientific approaches deal with collaborative decision-making: decision analysis (Carlsson & Turban, 2002; Doyle & Thomason, 1999; Keeney & Raiffa, 1976) developing different analytical tools for optimal decision-making; in management sciences the observation of decision-making styles activity (Nuut, 2005; Fong, Wyer, & Robert 2003); decision-making as a group work (Esser, 1998; Matta & Corby, 1997); studies concerning different types of decisions focalised on number of actors: individual (Keeney & Raiffa, 1976), group (Shim, Warkentin, Courtney, Power, Sharda, & Carlsson, 2002), cooperative (Zaraté, 2005), and collaborative (Karacapilidis & Papadias, 2001). For the collaborative decision-making field, the situation is clear. In most of research studies, the concept of collaborative decision-making is used as a synonym for cooperative decision-making. Hence, the collaborative decision-making process is considered to be distributed and asynchronous (Chim, Anumba, & Carillo, 2004; Cil, Alpturk, & Yazgan, 2005). However, we can stand out several works, having different research approaches, considering collaborative decision-making process as multi-actor decision-making process, where actors have different goals. Considering (Panzarasa, Jennings, & Norman, 2002) the collaborative decision-making process is seen as “a group of logically decentralised agents that cooperate to achieve objectives that are typically beyond the capacities of an individual agent. In short, the collaborative decision-making has generally been viewed and modelled as a kind of distributed reasoning and search, whereby a collection of agents collaboratively go throughout the search space of the problem in order to find a solution.” The main interrogation of this article is to study the best way to support collaborative decision-making process.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2535 ◽  
Author(s):  
Il-Kyu Ha ◽  
You-Ze Cho

Finding a target quickly is one of the most important tasks in drone operations. In particular, rapid target detection is a critical issue for tasks such as finding rescue victims during the golden period, environmental monitoring, locating military facilities, and monitoring natural disasters. Therefore, in this study, an improved hierarchical probabilistic target search algorithm based on the collaboration of drones at different altitudes is proposed. This is a method for reducing the search time and search distance by improving the information transfer methods between high-altitude and low-altitude drones. Specifically, to improve the speed of target detection, a high-altitude drone first performs a search of a wide area. Then, when the probability of existence of the target is higher than a certain threshold, the search information is transmitted to a low-altitude drone which then performs a more detailed search in the identified area. This method takes full advantage of fast searching capabilities at high altitudes. In other words, it reduces the total time and travel distance required for searching by quickly searching a wide search area. Several drone collaboration scenarios that can be performed by two drones at different altitudes are described and compared to the proposed algorithm. Through simulations, the performances of the proposed algorithm and the cooperation scenarios are analyzed. It is demonstrated that methods utilizing hierarchical searches with drones are comparatively excellent and that the proposed algorithm is approximately 13% more effective than a previous method and much better compared to other scenarios.


1980 ◽  
Vol 7 (4) ◽  
pp. 457-478 ◽  
Author(s):  
Dorothy Lenk Krueger

This study investigates differences among four decision-making groups and describes the patterns of communication unique to two groups. In the first part of the investigation, four decision-making groups are given either competitive or cooperative inducements and are compared on two measures: competition and satisfaction. The two groups given the competitive inducement (Groups I and III) were found to have significantly higher competition and lower satisfaction than the groups given cooperative inducements (Groups II and IV). In the second part of the study a lag sequential analysis is conducted on the coded communicative sequences in the highest and lowest competition groups (I and II, respectively). This analysis yields patterns to decision-making unique to each sample group. Group I's communication is characterized by highly probable (above-chance) sequences of disagreement messages and few probable agreement messages. Group II's communication patterns consist of highly probable sequences of decision development and probable agreement/support messages throughout the group interaction.


Sign in / Sign up

Export Citation Format

Share Document