scholarly journals Applied Research on InSAR and GPS Data Fusion in Deformation Monitoring

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ziwen Zhang ◽  
Xuelian Wang ◽  
Yongdong Wu ◽  
Zengpeng Zhao ◽  
Yang E

With the enrichment of land subsidence monitoring means, data fusion of multisource land subsidence data has gradually become a research hotspot. The Interferometry Synthetic Aperture Radar (InSAR) is a potential Earth observation approach, and it has been verified to have a variety of applications in measuring ground movement, urban subsidence, and landslides but similar to Global Positioning System (GPS). The InSAR observation accuracy and measurements are affected by the tropospheric delay error as well as by the Earth’s ionospheric and tropospheric layers. In order to rectify the InSAR result, there is a need to interpolate the GPS-derived tropospheric delay. Keeping in view of the above, this research study has presented an improved Inverse Distance Weighting (IIDW) interpolation method based on Inverse Distance Weighting (IDW) interpolation by using Sentinel-1 radar satellite image provided by European Space Agency (ESA) and the measured data from the Continuously Operating Reference Stations (CORS) provided by the Survey and Mapping Office of the Lands Department of Hong Kong. Furthermore, the corrected differential tropospheric delay correction is used to correct the InSAR image. The experimental results show that the correction of tropospheric delay by IIDW interpolation not only improves the accuracy of Differential Interferometry Synthetic Aperture Radar (D-InSAR) but also provides a new idea for the solution of InSAR and GPS data fusion.

2018 ◽  
Vol 10 (8) ◽  
pp. 1304 ◽  
Author(s):  
Yusupujiang Aimaiti ◽  
Fumio Yamazaki ◽  
Wen Liu

In earthquake-prone areas, identifying patterns of ground deformation is important before they become latent risk factors. As one of the severely damaged areas due to the 2011 Tohoku earthquake in Japan, Urayasu City in Chiba Prefecture has been suffering from land subsidence as a part of its land was built by a massive land-fill project. To investigate the long-term land deformation patterns in Urayasu City, three sets of synthetic aperture radar (SAR) data acquired during 1993–2006 from European Remote Sensing satellites (ERS-1/-2 (C-band)), during 2006–2010 from the Phased Array L-band Synthetic Aperture Radar onboard the Advanced Land Observation Satellite (ALOS PALSAR (L-band)) and from 2014–2017 from the ALOS-2 PALSAR-2 (L-band) were processed by using multitemporal interferometric SAR (InSAR) techniques. Leveling survey data were also used to verify the accuracy of the InSAR-derived results. The results from the ERS-1/-2, ALOS PALSAR and ALOS-2 PALSAR-2 data processing showed continuing subsidence in several reclaimed areas of Urayasu City due to the integrated effects of numerous natural and anthropogenic processes. The maximum subsidence rate of the period from 1993 to 2006 was approximately 27 mm/year, while the periods from 2006 to 2010 and from 2014 to 2017 were approximately 30 and 18 mm/year, respectively. The quantitative validation results of the InSAR-derived deformation trend during the three observation periods are consistent with the leveling survey data measured from 1993 to 2017. Our results further demonstrate the advantages of InSAR measurements as an alternative to ground-based measurements for land subsidence monitoring in coastal reclaimed areas.


2011 ◽  
Vol 268-270 ◽  
pp. 1934-1939
Author(s):  
Kun Chao Lei ◽  
Hui Li Gong ◽  
Xiao Juan Li ◽  
Bei Bei Chen ◽  
Ji Wei Li ◽  
...  

Land subsidence in Cangzhou of the North China Plain, has been an ongoing problem for the past four decades (since the later 1970s). With the development of new synthetic aperture radar(SAR)sensors and interferometric synthetic aperture radar(InSAR) techniques, the application of satellite Radar data have enhanced capabilities to detect and monitor ground displacements with centimeter to millimeter precision at greater spatial detail and higher temporal resolution. We use Permanent Scatterers interferometric synthetic aperture radar(PS-InSAR)technology (Hooper, A.2004) to detect and measure ground movement in this area(from2004 to 2007). Results of the cangzhou region study are reported and the utility of the InSAR methodology is discussed.


Sign in / Sign up

Export Citation Format

Share Document