scholarly journals Coupled Lateral and Torsional Vibration of Rub-Impact Rotor during Hovering Flight

2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Nan Zheng ◽  
Moli Chen ◽  
Guihuo Luo ◽  
Zhifeng Ye

When aircraft make a maneuvering during flight, additional loads acting on the engine rotor system are generated, which may induce rub-impact faults between the rotor and stator. To study the rub-impact response characteristics of the rotor system during hovering flight, the dynamic model of a rub-impact rotor system is established with lateral-torsional vibration coupling effect under arbitrary maneuvering flight conditions using the finite element method and Lagrange equation. An implicit numerical integral method combining the Newmark-β and Newton–Raphson methods is used to solve the vibration response. The results indicate that the dynamic characteristics of the rotor system will change during maneuvering flight, and the subharmonic vibrations are amplified in both lateral and torsional vibrations due to maneuvering overload. The form of the rub-impact is different during level and hovering flight conditions: the rub-impact may occur at an arbitrary phase of the whole cycle under the condition of level flight, while only local rub-impact occurs during hovering flight. Under the both flight conditions, the rub-impact has a large effect on the spectral characteristics, periodicity, and stability of the rotor system.

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Pingping Ma ◽  
Mingxin Shan ◽  
Jingyu Zhai ◽  
Hao Zhang ◽  
Qingkai Han

To study the rub-impact fault between the dynamic and static parts of the rotor system of aeroengines, the dual-rotor system of a typical aeroengine is introduced and taken as the research object. The analytical kinetic model is established based on the Lagrange equation considering the structural characteristics of the dual-rotor system, the coupling effect of the intermediate bearing, and the rub-impact fault between the high-pressure turbine disc and the casing. The dynamic characteristics of the dual-rotor system under the rub-impact fault are analyzed, and the change rule of the rub-impact shape is obtained. The vibration coupling and transfer among the high-pressure rotor and the low-pressure rotor are revealed. The influence of the unbalanced position and the speed of high and low rotors on the vibration response of the dual rotor is obtained. The sensitivity of the vibration response of the dual rotor at different test points to rub-impact stiffness, clearance, and friction coefficient is compared. The simulation model is established based on the rigid-flexible coupling multibody dynamic simulation platform. The analytical results and simulation results are compared, which have a good consistency. The theoretical research can deepen the understanding of the nature and law of aeroengine rotor operation, expose the possible faults and design defects, greatly improve the development efficiency and quality, reduce repeated physical tests, reduce the development risk and cost, and accelerate the development process. This study can provide a theoretical basis for the monitoring and diagnosis of engine rub-impact faults and provide theoretical and practical reference for the establishment of the vibration fault test and analysis method system.


Author(s):  
April M. Free ◽  
George T. Flowers ◽  
Victor S. Trent

Abstract Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.


Author(s):  
Hiroyuki Fujiwara ◽  
Tadashi Tsuji ◽  
Osami Matsushita

In certain rotor systems, bending-torsion coupled resonance occurs when the rotational speed Ω (= 2π Ωrps) is equal to the sum/difference of the bending natural frequency ωb (= 2π fb) and torsional natural frequency ωθ(= 2πfθ). This coupling effect is due to an unbalance in the rotor. In order to clarify this phenomenon, an equation was derived for the motion of the bending-torsion coupled 2 DOF system, and this coupled resonance was verified by numerical simulations. In stability analyses of an undamped model, unstable rotational speed ranges were found to exist at about Ωrps = fb + fθ. The conditions for stability were also derived from an analysis of a damped model. In rotational simulations, bending-torsion coupled resonance vibration was found to occur at Ωrps = fb − fθ and fb + fθ. In addition, confirmation of this resonance phenomenon was shown by an experiment. When the rotor was excited in the horizontal direction at bending natural frequency, large torsional vibration appeared. On the other hand, when the rotor was excited by torsion at torsional natural frequency, large bending vibration appeared. Therefore, bending-torsion coupled resonance was confirmed.


2021 ◽  
pp. 146808742110689
Author(s):  
Bin Chen ◽  
Yunbo Hu ◽  
Yibin Guo ◽  
Zhijun Shuai ◽  
Chongpei Liu ◽  
...  

The coupling between the crankshaft and the camshaft is neglected before in fault diagnosis which may lead to incomplete fault information. In this paper, a new torsional coupling model of a diesel generator transmission system is proposed for fault diagnosis. The natural frequency and forced torsional vibration response of the model are obtained by the system matrix method and Newmark-β method. For the system without considering the lumped mass of camshafts, some key natural frequencies are lost. The vibration dynamics are compared for the transmission system with and without the new coupling model. And important frequency responses are missed in the spectrums of the forced torsional vibration without the new coupling model. Finally, the new coupling model is implemented in fault diagnosis and the cause of an unusual vibration fault is deduced in the simulation, which confirms the feasibility of the proposed model in fault diagnosis.


Author(s):  
Xi Chen ◽  
Xiaohua Gan ◽  
Guangming Ren

During aircraft maneuvering flights, engine's rotor-bearing systems are subjected to parametric excitations and additional inertial forces, which may cause severe vibration and abnormal operation. Based on Lagrange's principle combined with finite element modeling, the differential equations of motion for a squeeze film damped rotor-bearing system mounted on an aircraft in maneuvering flight are derived. Using Newmark–Hilber–Hughes–Taylor integration method, dynamic characteristics of the nonlinear rotor system under maneuvering flight are investigated. The factors are considered, involving mass unbalance, oil–film force, gravity, parametric excitations and additional inertial forces, and instantaneous static eccentricity of journal induced by maneuvering loads. The effects of forward velocity, radius of curvature, rotating speed, mass unbalance, oil–film clearance, and elastic support stiffness on transient responses of rotor system are discussed during diving–climbing maneuver. The results indicate that when the aircraft performs a diving–climbing maneuver in the vertical plane, the journal deviates from the center of oil–film outer ring, and the excursion direction of whirl orbit is determined by centrifugal acceleration and additional gyroscopic moment. The journal whirls asynchronously around the instantaneous static eccentricity and its magnitude is related to the maneuvering loads and the supporting stiffness. Increasing forward velocity or decreasing pitching radius, the rotor vibration will enter earlier into or withdraw later from the relatively large eccentricity. Rotating near critical speeds or excessive mass unbalances should be prevented during maneuvering flights. For large maneuver, the oil–film radial clearance needs to be enlarged properly to avoid hard contact between journal and outer ring. In addition, the stiffness of elastic support needs to be appropriately determined for damping performance. Overall, it provides a flexible approach with good expandability to predict dynamic characteristics of on-board squeeze-film damped rotor system during maneuvering flights in the design process.


2019 ◽  
Vol 293 ◽  
pp. 04004
Author(s):  
Jinping Chen ◽  
Li Zhang ◽  
Yanyan Luo ◽  
Haining Zhang ◽  
Jun Liu

The magnetic bearing-rotor system is subject to various external disturbances in practical application. Under certain control conditions, the random response characteristics of the magnetic bearing-rotor system are a particular concern. This paper analyzes the response characteristics of base of the magnetic bearing subjected to acceleration random excitation in the horizontal direction. First, the magnetic bearing-rotor system model is deduced. Then, the random response of the rotor under acceleration random excitation is derived. The probability of the collision of the rotor between the auxiliary bearing is calculated and the example is given. The paper conclusion provides a theoretical basis for the collision detection and prediction of the magnetic bearing-rotor system.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Hongxian Zhang ◽  
Liangpei Huang ◽  
Xuejun Li ◽  
Lingli Jiang ◽  
Dalian Yang ◽  
...  

The finite element model of a dual-rotor system was established by Timoshenko beam element. The dual-rotor system is a coaxial rotor whose supporting structure is similar to that of an aero-engine rotor system. The inner rotor is supported by three bearings, which makes it a redundantly supported rotor. The outer rotor connects the inner rotor by an intershaft bearing. The spectrum characteristics of the dual-rotor system under unbalanced excitation and misalignment excitation were analysed in order to study the influence of coupling misalignment of the inner rotor on the spectral characteristics of the rotor system. The results indicate that the vibration caused by the misaligned coupling of the inner rotor will be transmitted to the outer rotor through the intershaft bearing. Multiple harmonic frequency components, mainly 1x and 2x, will be excited by the coupling misalignment. The amplitudes of all harmonic frequencies increase with the misalignment in both the inner and outer rotors. The vibration level of the outer rotor affected by the misalignment is lower than that of the inner rotor because it is far from the misaligned coupling. Harmonic resonance occurs when any harmonic frequencies of the misalignment response coincide with a natural frequency of the system. In order to verify the theoretical model, experiments are performed on a test rig. Both the experimental and simulation results are in good accordance with each other.


Author(s):  
Sitae Kim ◽  
Alan B. Palazzolo

The double-sided fluid film force on the inner and outer ring surfaces of a floating ring bearing (FRB) creates strong nonlinear response characteristics such as coexistence of multiple orbits, Hopf bifurcation, Neimark-Sacker (N-S) bifurcation, and chaos in operations. An improved autonomous shooting with deflation algorithm is applied to a rigid rotor supported by FRBs for numerically analyzing its nonlinear behavior. The method enhances computation efficiency by avoiding previously found solutions in the numerical-based search. The solution manifold for phase state and period is obtained using arc-length continuation. It was determined that the FRB-rotor system has multiple response states near Hopf and N-S bifurcation points, and the bifurcation scenario depends on the ratio of floating ring length and diameter (L/D). Since multiple responses coexist under the same operating conditions, simulation of jumps between two stable limit cycles from potential disturbance such as sudden base excitation is demonstrated. In addition, this paper investigates chaotic motions in the FRB-rotor system, utilizing four different approaches, strange attractor, Lyapunov exponent, frequency spectrum, and bifurcation diagram. A numerical case study for quenching the large amplitude motion by adding unbalance force is provided and the result shows synchronization, i.e., subsynchronous frequency components are suppressed. In this research, the fluid film forces on the FRB are determined by applying the finite element method while prior work has utilized a short bearing approximation. Simulation response comparisons between the short bearing and finite bearing models are discussed.


Sign in / Sign up

Export Citation Format

Share Document