scholarly journals Guidance, Navigation, and Control for Fixed-Wing UAV

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Amber Israr ◽  
Eman H. Alkhammash ◽  
Myriam Hadjouni

The purpose of this paper is to develop a fixed-wing aircraft that has the abilities of both vertical take-off (VTOL) and a fixed-wing aircraft. To achieve this goal, a prototype of a fixed-wing gyroplane with two propellers is developed and a rotor can maneuver like a drone and also has the ability of vertical take-off and landing similar to a helicopter. This study provides guidance, navigation, and control algorithm for the gyrocopter. Firstly, this study describes the dynamics of the fixed-wing aircraft and its control inputs, i.e., throttle, blade pitch, and thrust vectors. Secondly, the inflow velocity, the forces acting on the rotor blade, and the factors affecting the rotor speed are analyzed. Afterward, the mathematical models of the rotor, dual engines, wings, and vertical and horizontal tails are presented. Later, the flight control strategy using a global processing system (GPS) module is designed. The parameters that are examined are attitude, speed, altitude, turn, and take-off control. Lastly, hardware in the loop (HWIL) based simulations proves the effectiveness and robustness of the navigation guidance and control mechanism. The simulations confirm that the proposed novel mechanism is robust and satisfies mission requirements. The gyrocopter remains stable during the whole flight and maneuvers the designated path efficiently.

Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

To solve the multi-interceptor coordination problem and to intercept the target with impact angle constraint, a novel distributed cooperative control algorithm with impact angle constraint based on integrated guidance and control is proposed. First, the mathematic model of integrated guidance and control is established by combining the interceptor-target relative motion model with the dynamic equation of the interceptor on pitch plane. The time varying gain extended state observer is developed to estimate and compensate the unknown disturbance. Based on the estimated value and fast nonsingular dynamic surface sliding control method, the IGC algorithm of leader is given; Then, based on distributed cooperative "leader-follower" model, the cooperative control strategy of multi-interceptor is designed, and gives out speeds in two directions on pitch plane, which are transformed to the command of total velocity and trajectory angle based on kinematic relations. Finally, to control the follower, the time varying gain extended state observer and the dynamic surface sliding control method are adopted. The simulation results demonstrate the effectiveness of the distributed cooperative control algorithm.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Riccardo Bevilacqua ◽  
Marcello Romano ◽  
Fabio Curti ◽  
Andrew P. Caprari ◽  
Veronica Pellegrini

This work introduces theoretical developments and experimental verification for Guidance, Navigation, and Control of autonomous multiple spacecraft assembly. We here address the in-plane orbital assembly case, where two translational and one rotational degrees of freedom are considered. Each spacecraft involved in the assembly is both chaser and target at the same time. The guidance and control strategies are LQR-based, designed to take into account the evolving shape and mass properties of the assembling spacecraft. Each spacecraft runs symmetric algorithms. The relative navigation is based on augmenting the target's state vector by introducing, as extra state components, the target's control inputs. By using the proposed navigation method, a chaser spacecraft can estimate the relative position, the attitude and the control inputs of a target spacecraft, flying in its proximity. The proposed approaches are successfully validated via hardware-in-the-loop experimentation, using four autonomous three-degree-of-freedom robotic spacecraft simulators, floating on a flat floor.


1998 ◽  
Vol 120 (3) ◽  
pp. 353-359 ◽  
Author(s):  
J. L. Dohner

Cooperative micro-robotic scent tracking vehicles are designed to collectively “sniff out” locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper, a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed.


2007 ◽  
Author(s):  
Pil-Chang Son ◽  
Min-Cheol Song ◽  
Beomcheon Kim ◽  
Cheon-Kyun Oh ◽  
Young-Do Parkl

2013 ◽  
Vol 655-657 ◽  
pp. 1479-1483
Author(s):  
Jiu Hui Ding ◽  
Bai Wei Guo ◽  
Shuang Wei

one hardware-in-the-loop simulation (referred to HILS) system for terminally guided projectile guidance and control system has been built, based on the analysis to the demand of HILS for the guidance and control system of the terminally guided projectile. The running process and the comparison results of the HILS & mathematical simulation have been given. The simulation results show that the movement of the terminally guided projectile could be simulated by the HILS system, which has a high benefit-cost ratio and confidence.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Gilberto Arantes ◽  
Luiz S. Martins-Filho

Noncooperative target spacecrafts are those assets in orbit that cannot convey any information about their states (position, attitude, and velocities) or facilitate rendezvous and docking/berthing (RVD/B) process. Designing a guidance, navigation, and control (GNC) module for the chaser in a RVD/B mission with noncooperative target should be inevitably solved for on-orbit servicing technologies. The proximity operations and the guidance for achieving rendezvous problems are addressed in this paper. The out-of-plane maneuvers of proximity operations are explored with distinct subphases, including a chaser far approach in the target’s orbit to the first hold point and a closer approach to the final berthing location. Accordingly, guidance solutions are chosen for each subphase from the standard Hill based Closhessy-Willtshire (CW) solution, elliptical fly-around, and Glideslope algorithms. The control is based on a linear quadratic regulator approach (LQR). At the final berthing location, attitude tracker based on a proportional derivative (PD) form is tested to synchronize the chaser and target attitudes. The paper analyzes the performance of both controllers in terms of the tracking ability and the robustness. Finally, it prescribes any restrictions that may be imposed on the guidance during any subphase which can help to improve the controllers tracking ability.


Sign in / Sign up

Export Citation Format

Share Document