scholarly journals Big Data Energy Consumption Monitoring Technology of Obese Individuals Based on MEMS Sensor

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongjun Zhao ◽  
Juan Zhao ◽  
Liang Ding ◽  
Congcong Xie

The application of micro electro mechanical system (MEMS) is more and more extensive, involving military, medical, communication and other major fields. The progress of science and technology has brought cross era changes to human beings, but also brought troubles to human beings. Because machines can replace most people, which leads to a significant reduction in human exercise, many people have the symptoms of obesity. Therefore, how to effectively detect human exercise energy consumption is of great significance to improve obesity symptoms. The energy consumption detector takes stm32f103zet6 as the core processor and uses the inertial sensor mpu6050 to build a MEMS sensor system to monitor the daily motion state and gait of human body in real time. In the design of the big data algorithm, the adaptive peak detection and step, decision tree two-level classification of motion recognition big data algorithm are organically integrated, and then combined with the acceleration vector value of the motion energy detection big data algorithm, to process the collected motion data, including the acceleration signal, gyroscope and other data processing, and finally complete the feature extraction, get the final recognition and detection results. Through the data reference, we can know that the system can recognize different human motion states. Among them, it has 95% accuracy in the motion recognition of sitting, standing, walking, running, going up and down stairs and lying back, which is basically the same as the top detectors on the market. In the energy consumption detection, it also has 95% accuracy, which proves the correctness of the experimental big data algorithm design, and also improves the accuracy It is proved that the system has good performance and high practicability, and can provide a new idea for obese individual motion detection.

Author(s):  
Mengmeng Xing ◽  
Guohui Wei ◽  
Hui Cao ◽  
Feng Yang ◽  
Yongqi Nie ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Peng Wang

With the rapid development of science and technology in today’s society, various industries are pursuing information digitization and intelligence, and pattern recognition and computer vision are also constantly carrying out technological innovation. Computer vision is to let computers, cameras, and other machines receive information like human beings, analyze and process their semantic information, and make coping strategies. As an important research direction in the field of computer vision, human motion recognition has new solutions with the gradual rise of deep learning. Human motion recognition technology has a high market value, and it has broad application prospects in the fields of intelligent monitoring, motion analysis, human-computer interaction, and medical monitoring. This paper mainly studies the recognition of sports training action based on deep learning algorithm. Experimental work has been carried out in order to show the validity of the proposed research.


2021 ◽  
Vol 11 (4) ◽  
pp. 1902
Author(s):  
Liqiang Zhang ◽  
Yu Liu ◽  
Jinglin Sun

Pedestrian navigation systems could serve as a good supplement for other navigation methods or for extending navigation into areas where other navigation systems are invalid. Due to the accumulation of inertial sensing errors, foot-mounted inertial-sensor-based pedestrian navigation systems (PNSs) suffer from drift, especially heading drift. To mitigate heading drift, considering the complexity of human motion and the environment, we introduce a novel hybrid framework that integrates a foot-state classifier that triggers the zero-velocity update (ZUPT) algorithm, zero-angular-rate update (ZARU) algorithm, and a state lock, a magnetic disturbance detector, a human-motion-classifier-aided adaptive fusion module (AFM) that outputs an adaptive heading error measurement by fusing heuristic and magnetic algorithms rather than simply switching them, and an error-state Kalman filter (ESKF) that estimates the optimal systematic error. The validation datasets include a Vicon loop dataset that spans 324.3 m in a single room for approximately 300 s and challenging walking datasets that cover large indoor and outdoor environments with a total distance of 12.98 km. A total of five different frameworks with different heading drift correction methods, including the proposed framework, were validated on these datasets, which demonstrated that our proposed ZUPT–ZARU–AFM–ESKF-aided PNS outperforms other frameworks and clearly mitigates heading drift.


Author(s):  
Eva García-Martín ◽  
Niklas Lavesson ◽  
Håkan Grahn ◽  
Emiliano Casalicchio ◽  
Veselka Boeva

AbstractRecently machine learning researchers are designing algorithms that can run in embedded and mobile devices, which introduces additional constraints compared to traditional algorithm design approaches. One of these constraints is energy consumption, which directly translates to battery capacity for these devices. Streaming algorithms, such as the Very Fast Decision Tree (VFDT), are designed to run in such devices due to their high velocity and low memory requirements. However, they have not been designed with an energy efficiency focus. This paper addresses this challenge by presenting the nmin adaptation method, which reduces the energy consumption of the VFDT algorithm with only minor effects on accuracy. nmin adaptation allows the algorithm to grow faster in those branches where there is more confidence to create a split, and delays the split on the less confident branches. This removes unnecessary computations related to checking for splits but maintains similar levels of accuracy. We have conducted extensive experiments on 29 public datasets, showing that the VFDT with nmin adaptation consumes up to 31% less energy than the original VFDT, and up to 96% less energy than the CVFDT (VFDT adapted for concept drift scenarios), trading off up to 1.7 percent of accuracy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hossein Ahmadvand ◽  
Fouzhan Foroutan ◽  
Mahmood Fathy

AbstractData variety is one of the most important features of Big Data. Data variety is the result of aggregating data from multiple sources and uneven distribution of data. This feature of Big Data causes high variation in the consumption of processing resources such as CPU consumption. This issue has been overlooked in previous works. To overcome the mentioned problem, in the present work, we used Dynamic Voltage and Frequency Scaling (DVFS) to reduce the energy consumption of computation. To this goal, we consider two types of deadlines as our constraint. Before applying the DVFS technique to computer nodes, we estimate the processing time and the frequency needed to meet the deadline. In the evaluation phase, we have used a set of data sets and applications. The experimental results show that our proposed approach surpasses the other scenarios in processing real datasets. Based on the experimental results in this paper, DV-DVFS can achieve up to 15% improvement in energy consumption.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098321
Author(s):  
Anzhu Miao ◽  
Feiping Liu

Human motion recognition is a branch of computer vision research and is widely used in fields like interactive entertainment. Most research work focuses on human motion recognition methods based on traditional video streams. Traditional RGB video contains rich colors, edges, and other information, but due to complex background, variable illumination, occlusion, viewing angle changes, and other factors, the accuracy of motion recognition algorithms is not high. For the problems, this article puts forward human motion recognition based on extreme learning machine (ELM). ELM uses the randomly calculated implicit network layer parameters for network training, which greatly reduces the time spent on network training and reduces computational complexity. In this article, the interframe difference method is used to detect the motion region, and then, the HOG3D feature descriptor is used for feature extraction. Finally, ELM is used for classification and recognition. The results imply that the method proposed here has achieved good results in human motion recognition.


Sign in / Sign up

Export Citation Format

Share Document