scholarly journals Ginsenoside Rg5 Inhibits Human Osteosarcoma Cell Proliferation and Induces Cell Apoptosis through PI3K/Akt/mTORC1-Related LC3 Autophagy Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ming-Yang Liu ◽  
Fei Liu ◽  
Yan-Jiao Li ◽  
Jia-Ning Yin ◽  
Yan-Li Gao ◽  
...  

The function and mechanism underlying the suppression of human osteosarcoma cells by ginsenoside-Rg5 (Rg5) was investigated in the present study. MG-63, HOS, and U2OS cell proliferation was determined by MTT assay after Rg5 treatment for 24 h. Rg5 inhibited human osteosarcoma cell proliferation effectively in a dose-dependent manner. The range of effective inhibitory concentrations was 160-1280 nM. Annexin V-FITC and PI double-staining assay revealed that Rg5 induced human osteosarcoma cell apoptosis. Western blotting, qRT-PCR, and FACS experiments revealed that Rg5 inhibited human osteosarcoma cells via caspase-3 activity which was related to the LC3-mediated autophagy pathway. Rg5 decreased the phosphorylation of PI3K, Akt, and mTORC1 activation. In contrast, LC3-mediated autophagy and caspase-3 activity increased significantly. A PI3K/AKT stimulator, IGF-1, reversed Rg5-induced cell autophagy and apoptosis in MG-63 cells. Collectively, the current study demonstrated that Rg5 induced human osteosarcoma cell apoptosis through the LC3-mediated autophagy pathway. Under physiological conditions, activation of PI3K/AKT/mTORC1 inhibits LC3 activity and caspase-3-related cell apoptosis. However, Rg5 activated LC3 activity by inhibiting the activation of PI3K/AKT/mTORC1. The present study indicated that Rg5 could be a promising candidate as a chemotherapeutic agent against human osteosarcoma.

2016 ◽  
Vol 11 (4) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Jose M. Moran ◽  
Olga Leal-Hernandez ◽  
Maria L. Canal-Macías ◽  
Raul Roncero-Martin ◽  
Rafael Guerrero-Bonmatty ◽  
...  

In this study, we evaluated the antiproliferative activity on two human osteosarcoma cell lines (MG-63 and Saos2) of oleuropein, an olive oil compound traditionally found in the Mediterranean diet. Oleuropein exhibited obvious cytotoxic effects on human osteosarcoma cells in a concentration- and time-dependent manner. Statistical analysis of IC50 by the Probit regression method suggested that oleuropein had similar toxic effects on both cell lines tested (IC50 range from 247.4–475.0 μM for MG63 cells and from 798.7–359.9 μM for Saos2 cells).


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Huanhuan Lv ◽  
Chenxiao Zhen ◽  
Junyu Liu ◽  
Peng Shang

Osteosarcoma is the most common primary malignancy of the skeleton in children and adults. The outcomes of people with osteosarcomas are unsatisfied. β-Phenethyl isothiocyanate (PEITC) exhibits chemoprevention and chemotherapeutic activities against many human cancers. The molecular mechanism underlying its action on osteosarcoma is still unknown. This study was aimed at investigating the effect of PEITC on human osteosarcoma both in vitro and in vivo. The results showed that PEITC reduced cell viability, inhibited proliferation, and caused G2/M cell cycle arrest in four human osteosarcoma cell lines (MNNG/HOS, U-2 OS, MG-63, and 143B). Then, we found that PEITC altered iron metabolism related to the processes of iron import, storage, and export, which resulted in increased labile iron. Expectedly, PEITC caused oxidative stress as a consequence of GSH depletion-inducing ROS generation and lipid peroxidation. Multiple cell death modalities, including ferroptosis, apoptosis, and autophagy, were triggered in human osteosarcoma cells. Three MAPKs (ERK, p38, and JNK) were all activated after PEITC treatment; however, they presented different responses among the four human osteosarcoma cell lines. ROS generation was proved to be the major cause of PEITC-induced decreased proliferative potential, altered iron metabolism, cell death, and activated MAPKs in human osteosarcoma cells. In addition, PEITC also significantly delayed tumor growth in a xenograft osteosarcoma mouse model with a 30 mg/kg administration dose. In conclusion, this study reveals that PEITC simultaneously triggers ferroptosis, apoptosis, and autophagy in human osteosarcoma cells by inducing oxidative stress.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 52 ◽  
Author(s):  
Lucas Dias ◽  
Ana Batista de Carvalho ◽  
Sara Pinto ◽  
Gilberto Aquino ◽  
Mário Calvete ◽  
...  

In the present study, we developed a green epoxidation approach for the synthesis of the diastereomers of (−)-isopulegol benzyl ether epoxide using molecular oxygen as the oxidant and a hybrid manganese(III)-porphyrin magnetic reusable nanocomposite as the catalyst. High activity, selectivity, and stability were obtained, with up to four recycling cycles without the loss of activity and selectivity for epoxide. The anticancer effect of the newly synthesized isopulegol epoxide diastereomers was evaluated on a human osteosarcoma cell line (MG-63); both diastereomers showed similar in vitro potency. The measured IC50 values were significantly lower than those reported for other monoterpene analogues, rendering these epoxide isomers as promising anti-tumor agents against low prognosis osteosarcoma.


Author(s):  
Zhen Tang ◽  
Xinghui Wei ◽  
Tian Li ◽  
Wei Wang ◽  
Hao Wu ◽  
...  

One contributor to the high mortality of osteosarcoma is its reduced sensitivity to chemotherapy, but the mechanism involved is unclear. Improving the sensitivity of osteosarcoma to chemotherapy is urgently needed to improve patient survival. We found that chemotherapy triggered apoptosis of human osteosarcoma cells in vitro and in vivo; this was accompanied by increased Sestrin2 expression. Importantly, autophagy was also enhanced with increased Sestrin2 expression. Based on this observation, we explored the potential role of Sestrin2 in autophagy of osteosarcoma. We found that Sestrin2 inhibited osteosarcoma cell apoptosis by promoting autophagy via inhibition of endoplasmic reticulum stress, and this process is closely related to the PERK-eIF2α-CHOP pathway. In addition, our study showed that low Sestrin2 expression can effectively reduce autophagy of human osteosarcoma cells after chemotherapy, increase p-mTOR expression, decrease Bcl-2 expression, promote osteosarcoma cell apoptosis, and slow down tumour progression in NU/NU mice. Sestrin2 activates autophagy by inhibiting mTOR via the PERK-eIF2α-CHOP pathway and inhibits apoptosis via Bcl-2. Therefore, our results explain one underlying mechanism of increasing the sensitivity of osteosarcoma to chemotherapy and suggest that Sestrin2 is a promising gene target.


2018 ◽  
Vol 46 (3) ◽  
pp. 1218-1230 ◽  
Author(s):  
Tang Liu ◽  
Zuyun Yan ◽  
Yong Liu ◽  
Edwin Choy ◽  
Francis J. Hornicek ◽  
...  

Background/Aims: Metastasis is the major cause of death in patients with osteosarcoma. There is an urgent need to identify molecular markers that promote metastasis. Cluster of differentiation 44 is a receptor for hyaluronic acid (HA) and HA-binding has been proven to participate in various biological tumor activities, including tumor progression and metastasis. Methods: We performed a meta-analysis to investigate the relationship between CD44 expression, survival, and metastasis in patients with osteosarcoma. We then utilized the CRISPR-Cas9 system to specifically silence CD44 in highly metastatic human osteosarcoma cells (MNNG/HOS and 143B) and further determined the functional effects of CD44 knockout in these cells. Results: The meta-analysis demonstrated that a high level of CD44 may predict poor survival and higher potential of metastasis in patients with osteosarcoma. The expression of CD44 in highly metastatic human osteosarcoma cell lines was efficiently blocked by CRISPR-Cas9. When CD44 was silenced, the proliferation and spheroid formation of these osteosarcoma cells was inhibited under 3-D culture conditions. Furthermore, the migratory and invasive functions were also impaired in these highly metastatic osteosarcoma cells. Conclusion: These results suggest that developing new strategies to target CD44 in osteosarcoma may prevent metastasis and improve the clinical outcome of osteosarcoma patients.


2021 ◽  
Vol 14 (6) ◽  
pp. 532
Author(s):  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Swee Keong Yeap ◽  
Mas Jaffri Masarudin ◽  
...  

Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiong Wang ◽  
Lei Zhang ◽  
Wenji Wang ◽  
Yuchen Wang ◽  
Ye Chen ◽  
...  

Human osteosarcoma is the most frequent primary malignant of bone, and often occurs in adolescents. However, molecular mechanism of this disease remains unclear. In the present study, we found that the level of Rhotekin 2 (RTKN2) was up-regulated in osteosarcoma tissues and cell lines. In addition, silencing of RTKN2 of human osteosarcoma cell lines U2OS, inhibited proliferation, and induced G1 phase cell cycle arrest via reducing the level of the cyclin-dependent kinase 2 (CDK2). Furthermore, RTKN2 knockdown in the U2OS cells induced apoptosis by increasing the level of Bax and decreasing the level of Bcl2. These results suggested that RTKN2 is involved in the progression of human osteosarcoma, and may be a potential therapeutic target.


2020 ◽  
Vol Volume 13 ◽  
pp. 8223-8232 ◽  
Author(s):  
Dong-Dong Duan ◽  
Hui Xie ◽  
Hua-Feng Shi ◽  
Wen-Wen Huang ◽  
Fan Ding ◽  
...  

2015 ◽  
Vol 37 (3) ◽  
pp. 933-939 ◽  
Author(s):  
Wei Hu ◽  
ZengMing Xiao

Background/Aims: Phytoestrogens are known to prevent tumor progression by inhibiting proliferation and inducing apoptosis in cancer cells. Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study investigates formononetin induction of apoptosis of human osteosarcoma cell line U2OS by regulating Bcl-2 and Bax expression in vitro and in vivo. Methods: U2OS cells were treated with different concentrations of formononetin and the proliferation of the cells was measured using an MTT assay. Cell apoptosis was examined by flow cytometry. The levels of miR-375, Bax and Bcl-2 protein expression in treated cells were determined by Western blot and RT-PCR. The antitumor activity of formononetin was also evaluated in vivo in nude mice bearing orthotopic tumor implants. Results: High concentrations of formononetin significantly suppress the proliferation of U2OS cells and induce cell apoptosis. Moreover, compared to control group the expression of Bcl-2 and miR-375 decreases with formononetin in the U2OS cells, while Bax increases. Conclusion: Formononetin has inhibitory effects on the proliferation of U2SO cells, both in vitro and in vivo. This antitumor effect is directly correlated with formononetin concentration.


Sign in / Sign up

Export Citation Format

Share Document