scholarly journals A Batch Authentication Design to Protect Conditional Privacy in Internet of Vehicles

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yuhao Yang ◽  
Xiujie Huang ◽  
Jinyu Hu

Internet of vehicles (IoV), a novel technology, holds paramount importance within the transportation domain due to its ability to increase traffic efficiency and safety. Information privacy is of vital importance in IoV when sharing information among vehicles. However, due to the openness of the communication network, information sharing is vulnerable to potential attacks, such as impersonation, modification, side-channel and replay attacks, and so on. In order to resolve the aforementioned problem, we present a conditional privacy-preserving batch authentication (CPPBA) scheme based on elliptic curve cryptography (ECC). The proposed scheme avoids the certificate management problem, conducing to efficiency improvement. When a message is transmitted by a vehicle, its pseudo identity rather than the real identity is also broadcasted along with the shared message, which protects the privacy of the vehicle’s identity. But this privacy is conditional because TA and only the TA can reveal the real identity of the vehicle by tracing. The proposed scheme is batch verifiable, which reduces the computation costs. In addition, our scheme does not involve bilinear pairing operations and does not use the map-to-point hash function, thus making the verification process more effective. An exhaustive efficiency comparison has been carried to show that the proposed CPPBA scheme has lower computation, communication, and storage overheads than the state-of-the-art ones. A relatively comprehensive security analysis has also been carried, which not only shows that the signature design in the CPPBA scheme is unforgeable under the random oracle model but also illustrates that the CPPBA scheme is resistant to various potential attacks. The security is also verified by a popular automated simulation tool, that is, AVISPA.

2019 ◽  
Vol 53 (1-2) ◽  
pp. 67-84 ◽  
Author(s):  
Ronghai Gao ◽  
Jiwen Zeng ◽  
Lunzhi Deng

Threshold decryption allows only quorum cooperate users to decrypt ciphertext encrypted under a public key. However, such threshold decryption scheme cannot be applied well in this situation where all users have their public and private key pairs, but do not share any private keys corresponding to the public keys, such as mobile network featured with dynamic character. The direct way to achieve threshold decryption in this case is to divide the message into several pieces and then encrypt these pieces with the public keys of different users. However, this is very inefficient. Multireceiver threshold decryption scheme that could be applied efficiently in the above situation. Recently, some certificateless (ID-based) multireceiver threshold decryption (signcryption) schemes are introduced. But the bilinear pairings are used in most of the existing schemes. In this paper, we propose an efficient certificateless threshold decryption scheme using elliptic curve cryptography (ECC) without bilinear pairing. Performance analysis shows that the proposed scheme has lower computation cost than existing some threshold decryption schemes in both encryption and decryption process. Security analysis shows that our scheme is IND-CCA secure, and no one outside of selected receivers can disclose receivers identities, against the adversaries defined in CL-PKC system under the random oracle model.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Yousheng Zhou ◽  
Junfeng Zhou ◽  
Feng Wang ◽  
Feng Guo

A chaotic map-based mutual authentication scheme with strong anonymity is proposed in this paper, in which the real identity of the user is encrypted with a shared key between the user and the trusted server. Only the trusted server can determine the real identity of a user during the authentication, and any other entities including other users of the system get nothing about the user’s real identity. In addition, the shared key of encryption can be easily computed by the user and trusted server using the Chebyshev map without additional burdensome key management. Once the partnered two users are authenticated by the trusted server, they can easily proceed with the agreement of the session key. Formal security analysis demonstrates that the proposed scheme is secure under the random oracle model.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Yang Ming ◽  
Hongliang Cheng

Vehicular ad hoc networks (VANETs) are an increasing important paradigm for greatly enhancing roadway system efficiency and traffic safety. To widely deploy VANETs in real life, it is critical to deal with the security and privacy issues in VANETs. In this paper, we propose a certificateless conditional privacy preserving authentication (CCPPA) scheme based on certificateless cryptography and elliptic curve cryptography for secure vehicle-to-infrastructure communication in VANETs. In the proposed scheme, a roadside unit (RSU) can simultaneously verify plenty of received messages such that the total verification time may be sharply decreased. Furthermore, the security analysis indicates that the proposed scheme is provably secure in the random oracle model and fulfills all the requirements on security and privacy. To further improve efficiency, both map-to-point hash operation and bilinear pairing operation are not employed. Compared with previous CCPPA schemes, the proposed scheme prominently cuts down computation delay of message signing and verification by 66.9%–85.5% and 91.8%–93.4%, respectively, and reduces communication cost by 44.4%. Extensive simulations show that the proposed scheme is practicable and achieves prominent performances of very little average message delay and average message loss ratio and thus is appropriate for realistic applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ronghai Gao ◽  
Jiwen Zeng ◽  
Lunzhi Deng

With the growing development of Internet technology and popularization of mobile devices, we easily access the Internet anytime and anywhere by mobile devices. It has brought great convenience for our lives. But it brought more challenges than traditional wired communication, such as confidentiality and privacy. In order to improve security and privacy protection in using mobile network, numerous multi-receiver identity-based encryption schemes have been proposed with bilinear pairing and probabilistic hap-to-point (HTP) function. To address the troubles of private key escrow in multi-receiver encryption scheme based on ID-PKC, recently, some certificateless anonymous multi-receiver encryption (CLAMRE) schemes are introduced. But previous CLAMRE schemes using the bilinear pairing are not suitable to mobile device because the use of bilinear pairing and probabilistic hash-to-point (HTP) function results in expensive operation costs in encryption or decryption. In this paper, we propose an efficient CLAMRE scheme using elliptic curve cryptography (ECC) without bilinear pairing and HTP hash function. Since our scheme does not use bilinear pairing and HTP operation during the encryption and decryption process, the proposed CLAMRE scheme has much less computation cost than the latest CLAMRE schemes. Performance analysis shows that runtime of our scheme is much less when the sender generates ciphertext, compared with existing schemes. Security analysis shows proposed CLAMRE scheme provides confidentiality of message and receiver anonymity under the random oracle model with the difficulties of decision Diffie-Hellman problem and against the adversaries defined in CL-PKC system.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Wenhao Liu ◽  
Qi Xie ◽  
Shengbao Wang ◽  
Lidong Han ◽  
Bin Hu

Since certificateless public key cryptosystem can solve the complex certificate management problem in the traditional public key cryptosystem and the key escrow problem in identity-based cryptosystem and the pairing computation is slower than scalar multiplication over the elliptic curve, how to design certificateless signature (CLS) scheme without bilinear pairings is a challenge. In this paper, we first propose a new pairing-free CLS scheme, and then the security proof is presented in the random oracle model (ROM) under the discrete logarithm assumption. The proposed scheme is more efficient than the previous CLS schemes in terms of computation and communication costs and is more suitable for the applications of low-bandwidth environments.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jiaqing Mo ◽  
Wei Shen ◽  
Weisheng Pan

Wearable health monitoring system (WHMS), which helps medical professionals to collect patients’ healthcare data and provides diagnosis via mobile devices, has become increasingly popular thanks to the significant advances in the wireless sensor network. Because health data are privacy-related, they should be protected from illegal access when transmitted over a public wireless channel. Recently, Jiang et al. presented a two-factor authentication protocol on quadratic residues with fuzzy verifier for WHMS. However, we observe that their scheme is vulnerable to known session special temporary information (KSSTI) attack, privileged insider attack, and denial-of-service (DoS) attack. To defeat these weaknesses, we propose an improved two-factor authentication and key agreement scheme for WHMS. Through rigorous formal proofs under the random oracle model and comprehensive informal security analysis, we demonstrate that the improved scheme overcomes the disadvantages of Jiang et al.’s protocol and withstands possible known attacks. In addition, comparisons with several relevant protocols show that the proposed scheme achieves more security features and has suitable efficiency. Thus, our scheme is a reasonable authentication solution for WHMS.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258907
Author(s):  
Can Zhao ◽  
Jiabing Liu ◽  
Fuyong Zheng ◽  
Dejun Wang ◽  
Bo Meng

Efficiency and privacy are the key aspects in content extraction signatures. In this study, we proposed a Secure and Efficient and Certificateless Content Extraction Signature with Privacy Protection (SECCESPP) in which scalar multiplication of elliptic curves is used to replace inefficient bilinear pairing of certificateless public key cryptosystem, and the signcryption idea is borrowed to implement privacy protection for signed messages. The correctness of the SECCESPP scheme is demonstrated by the consistency of the message and the accuracy of the equation. The security and privacy of the SECCESPP scheme are demonstrated based on the elliptic curve discrete logarithm problem in the random oracle model and are formally analyzed with the formal analysis tool ProVerif, respectively. Theory and experimental analysis show that the SECCESPP scheme is more efficient than other schemes.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Pengfei Su ◽  
Yong Xie ◽  
Ping Liu

Air pollution, water pollution, soil erosion, land desertification, and other environmental issues are becoming more and more serious. And ecological security has become a key issue for the sustainable development of the world, so research on ecology has received more and more attention. At present, ecological data is collected and stored separately by various departments or agencies. In order to conduct better research, various institutions or individuals begin to share their own data. However, data sharing between different organizations is affected by many factors, especially data security issues. At the moment, there is no scheme that has been commonly recognized to solve the problem of ecological data sharing. To provide a secure data sharing way for ecological research, a certificateless multireceiver signcryption scheme is proposed. In this paper, the proposed scheme can solve the key escrow problem, and it can improve efficiency on the basis of ensuring security by adopting elliptic curve cryptography (ECC). A rigorous security analysis proves that the scheme can resist various security attacks and ensure privacy protection based on a random oracle model. Performance analysis also shows that this scheme has the advantage of computational overhead compared to the same type of scheme. Therefore, the scheme is very suitable for the safe sharing of ecological data.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yingying Zhang ◽  
Jiwen Zeng ◽  
Wei Li ◽  
Huilin Zhu

Ring signature is a kind of digital signature which can protect the identity of the signer. Certificateless public key cryptography not only overcomes key escrow problem but also does not lose some advantages of identity-based cryptography. Certificateless ring signature integrates ring signature with certificateless public key cryptography. In this paper, we propose an efficient certificateless ring signature; it has only three bilinear pairing operations in the verify algorithm. The scheme is proved to be unforgeable in the random oracle model.


2021 ◽  
Vol 11 (16) ◽  
pp. 7350
Author(s):  
Jaeheung Lee ◽  
Yongsu Park

It is well known that conventional digital signature algorithms such as RSA and ECDSA are vulnerable to quantum computing attacks. Hash-based signature schemes are attractive as post-quantum signature schemes in that it is possible to calculate the quantitative security level and the security is proven. SPHINCS is a stateless hash-based signature scheme and introduces HORST few-time signature scheme which is an improvement of HORS. However, HORST as well as HORS suffers from pretty large signature sizes. HORSIC is proposed to reduce the signature size, yet does not provide in-depth security analysis. In this paper, we propose HORSIC+, which is an improvement of HORSIC. HORSIC+ differs from HORSIC in that HORSIC+ does not apply f as a plain function to the signature key, but uses a member of a function family. In addition, HORSIC+ uses the chaining function similar to W-OTS+. These enable the strict security proof without the need for the used function family to be a permutation or collision resistant. HORSIC+ is existentially unforgeable under chosen message attacks, assuming a second-preimage resistant family of undetectable one-way functions and cryptographic hash functions in the random oracle model. HORSIC+ reduces the signature size by as much as 37.5% or 18.75% compared to HORS and by as much as 61.5% or 45.8% compared to HORST for the same security level.


Sign in / Sign up

Export Citation Format

Share Document