scholarly journals Vibration Response Characteristics of Adjacent Tunnels under Different Blasting Schemes

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jianxin Yu ◽  
Zhibin Zhou ◽  
Xin Zhang ◽  
Xiaolin Yang ◽  
Jinxing Wang ◽  
...  

The vibration caused by the tunnel blasting and excavation will harm the surrounding rock and lining structure of the adjacent existing tunnels. This paper takes a two-lane large-span highway tunnel as the research object, conducts on-site monitoring tests on the impact of vibration caused by the blasting and excavation of new tunnels on the existing tunnels under different blasting schemes, and analyses in detail the three-dimension vibration velocity by different excavation footages. From the vibration speed, it is concluded that the influence of the existing tunnel of the newly built tunnel blasting team is affected by various factors, such as distance, free surface, charge, and blasthole distribution. With different blasting schemes, the greater the amount of charge, the greater the vibration caused by blasting. Existing tunnels correspond to the front of the tunnel, and the axial and radial vibration peaks are greater than the vertical. Although the cut segment uses a less amount of explosive and has a less blasthole layout, there is only one free surface. Because of the clamping of the rock, it is compared with the other two segments. The vibration caused is the largest. Although the peripheral holes are filled with a large amount of explosive, the arrangement of the blast holes is relatively scattered and there are many free surfaces. Hence, the vibration caused is the smallest. Corresponding to the back of the tunnel face, since there is no rock clamp, the vibration caused by the cut segment is the smallest, and the vibration caused by the peripheral segment and the floor segment is relatively large. The vibration caused by the front explosion side is significantly greater than the vibration caused by the back explosion side. The vibration velocity caused by the unit charge of 1.5 m footage is greater than that of the 3.0 m footage. The vibration velocity caused by the unit charge of the cut segment is the largest, and the vibration velocity caused by the peripheral segment and the floor segment is smaller. The research results provide a reference for the blasting control of similar engineering construction.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Baoxin Jia ◽  
Linli Zhou ◽  
Jiaojiao Cui ◽  
Hao Chen

AbstractIn tunnel blasting excavation, it is important to clarify the attenuation law of blast wave propagation and predict the blast vibration velocity effectively to ensure safe tunnel construction and protection design. The effects of the free surface area its quantity on the blast vibration velocity are considered, and free surface parameters are introduced to improve the existing blast vibration velocity prediction formula. Based on the Tianhuan railway Daqianshiling tunnel project, field blast vibration monitoring tests are performed to determine changes in the peak blasting vibration velocity based on the blast distance and free surface area. LS-DYNA is used to establish tunnel blasting excavation models under three operating conditions; subsequently, the attenuation law of blast vibration velocity and changes in the vibration response spectrum are analysed. Results show that the free surface area and number of free surfaces enable the blast vibration velocity to be predicted under various operating conditions: a smaller free surface area results in a narrower frequency band range, whereas more free surfaces result in a narrower frequency band range. The improved blast vibration velocity prediction formula is validated using field and numerical test data. It is indicated that the improved formula is applicable to various tunnelling conditions.


2011 ◽  
Vol 250-253 ◽  
pp. 2346-2351 ◽  
Author(s):  
Shu Ren Wang ◽  
Hui Hui Jia ◽  
Meng Shi Chang

Under the repeated blasting vibrations, the roof of the mined-out areas will suddenly collapse and fall because of its accumulated damage, which is a hidden danger for the miners and equipment on the surface. Based on the mined-out areas in Antaibao Surface Mine, the three-dimension engineering geological model and computational model were built using FLAC3D technique. According to the effect of the load of the mechanical construction equipment, and the blasting vibration velocity recorded by field monitoring, the equal-time-interval blasting vibration as normal incidence was exerted on the surface of the mined-out areas three times. Consequently the accumulated damage effect of the roof and surrounding rocks of mined-out areas were analyzed, the stress concentration extent and the range of principal stress were discussed as well. The dynamic response characteristics of deformation and the accumulated progressive displacement were revealed via the monitoring displacement curves. The above mentioned results can provide theoretical and technical basis for similar projects on reducing the hidden danger and ensuring safe mining.


2014 ◽  
Vol 70 (a1) ◽  
pp. C81-C81
Author(s):  
H. R. Sharma ◽  
J. A. Smerdon ◽  
K. Nozawa ◽  
K. M. Young ◽  
T. P. Yadav ◽  
...  

We have used quasicrystals as templates for the exploration of new epitaxial phenomena. Several interesting results have been observed in the growth on surfaces of the common Al-based quasicrystals [1]. These include pseudomorphic monolayers, quasiperiodically modulated multilayer structures, and fivefold-twinned islands with magic heights influenced by quantum size effects [1]. Here we present our recent works on the growth of various elements and molecules on a new substrate, icosahedral (i) Ag-In-Yb quasicrystal, which have resulted in various epitaxial phenomena not observed previously. The growth of Pb on the five-fold surface of i-Ag-In-Yb yields a film which possesses quasicrystalline ordering in three-dimension [2]. Using scanning tunneling microscopy (STM) and DFT calculations of adsorption energies, we find that lead atoms occupy the positions of atoms in the rhombic triacontahedral (RTH) cluster, the building block of the substrate, and thus grow in layers with different heights and adsorption energies. The adlayer–adlayer interaction is crucial for stabilizing the epitaxial quasicrystalline structure. We will also present the first example of quasicrystalline molecular layers. Pentacene adsorbs at tenfold-symmetric sites of Yb atoms around surface-bisected RTH clusters, yielding quasicrystalline order [3]. Similarly, C-60 growth on the five-fold surface of i-Al-Cu-Fe at elevated temperature produces quasicrystalline layer, where the growth is mediated by Fe atoms on the substrate surface [3]. The finding of quasicrystalline thin films of single elements and molecules opens an avenue for further investigation of the impact of the aperiodic atomic order over periodic order on the physical and chemical properties of materials.


Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012087
Author(s):  
Peng Hao ◽  
Lin’an Li ◽  
Jianxun Du

Abstract In order to research the impact mechanical response characteristics of the bio-inspired composite sandwich structure, the hemispherical impactor is preloaded with different energy to impact bio-inspired and conventional composite sandwich structure, the stress distribution and dynamic response characteristics of composite sandwich structure under impact load are studied. The results show that the main damage of the upper panel is fiber shear fracture, while crushing fracture for the core, and the main damage of the lower panel is fiber tensile tearing under different impact load. The bio-inspired composite sandwich structure shows better impact resistance in terms of damage depth and maximum impact load under the same impact energy. From the perspective of energy consumption, the bio-inspired structure absorbed more energy than conventional structure under high energy impact.


1999 ◽  
Vol 43 (04) ◽  
pp. 229-240
Author(s):  
H. R. Riggs ◽  
R. C. Ertekin

One design for a mobile offshore base is to link serially as many as five large semisubmersibles to form a platform long enough to support large aircraft. This paper investigates the linear, wave-induced response characteristics of serially-connected semisubmersibles. A major motivation of this study is to understand more completely the forces required to link semisubmersible modules. The impact of connector strategy and damping on the response, especially the connector forces, is investigated, and the response "modes" which contribute to the connector forces are evaluated in detail. It is shown that the response characteristics can be impacted significantly by the connection strategy, and that connector damping can be a significant source of energy loss when compared to radiation damping. The wet natural frequencies and normal modes are also determined and used to explain the response characteristics of different connection strategies. Although the analyses are based on a specific semisubmersible design, the results provide insight on how other systems of connected semisubmersibles would likely behave.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1324
Author(s):  
Javier García-Alba ◽  
Javier Bárcena ◽  
Andrés García

The evolution of positively buoyant jets was studied with non-intrusive techniques—Particle Image Velocimetry (PIV) and Laser Induce Fluorescence (LIF)—by analyzing four physical tests in their four characteristic zones: momentum dominant zone (jet-like), momentum to buoyancy transition zone (jet to plume), buoyancy dominant zone (plume-like), and lateral dispersion dominant zone. Four configurations were tested modifying the momentum and the buoyancy of the effluent through variations of flow discharge and the thermal gradient with the receiving water body, respectively. The physical model results were used to evaluate the performance of numerical models to describe such flows. Furthermore, a new method to delimitate the four characteristic zones of positively buoyant jets interacting with the water-free surface was proposed using the angle (α) shaped by the tangent of the centerline trajectory and the longitudinal axis. Physical model results showed that the dispersion of mass (concentrations) was always greater than the dispersion of energy (velocity) during the evolution of positively buoyant jets. The semiempirical models (CORJET and VISJET) underestimated the trajectory and overestimated the dilution of positively buoyant jets close to the impact zone with the water-free surface. The computational fluid dynamics (CFD) model (Open Field Operation And Manipulation model (OpenFOAM)) is able to reproduce the behavior of positively buoyant jets for all the proposed zones according to the physical results.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3446 ◽  
Author(s):  
Xiaohan Wang ◽  
Shangchun Piao ◽  
Yahui Lei ◽  
Nansong Li

Ocean Bottom Seismometers (OBS) placed on the seafloor surface are utilized for measuring the ocean bottom seismic waves. The vibration of OBS excited by underwater noise on its surface may interfere with its measured results of seismic waves. In this particular study, an OBS was placed on the seabed, while ray acoustic theory was used to deduce the sound field distribution around the OBS. Then using this information, the analytical expression for the OBS vibration velocity was obtained in order to find various factors affecting its amplitude. The finite element computing software COMSOL Multiphysics® (COMSOL) was used to obtain the vibration response model of the OBS which was exposed to underwater noise. The vibration velocity for the OBS calculated by COMSOL agreed with the theoretical result. Moreover, the vibration velocity of OBS with different densities, shapes, and characters were investigated as well. An OBS with hemispherical shape, consistent average density as that of the seafloor, and a physical structure of double tank has displayed minimum amplitude of vibration velocity. The proposed COMSOL model predicted the impact of underwater noise while detecting the ocean bottom seismic waves with the OBS. In addition, it provides significant help for the design and optimization of an appropriate OBS.


2015 ◽  
Author(s):  
Aldo Tralli ◽  
Arnout C. Bijlsma ◽  
Wilbert te Velde ◽  
Pieter de Haas

In order to estimate the impact on energy production and environment of tidal turbines placed in or near hydraulic structures like discharge sluices or storm surge barriers, a Computational Fluid Dynamics (CFD) study has been carried out on the relation between (head) loss induced by the turbines and their gross power production. CFD computations have been performed for Tocardo T2 turbines, using STAR-CCM+. Simulations of a single turbine in free flow conditions compare favorably with results of Blade Element Momentum (BEM) computations, in terms of torque and thrust. This BEM method model had been previously validated against both CFD data and field measurements. Then, a series of tests has been performed in a “virtual tow tank”, including the effect of the free surface and the blockage by side and bottom walls. These computations provide a base for a first estimate of the effect of turbines on the discharge capacity of a generic structure. This is considered to be the first step in a more general approach in which ultimately the effect of tidal turbines in the Eastern Scheldt Storm Surge Barrier will be assessed.


2018 ◽  
Vol 850 ◽  
pp. 1066-1116 ◽  
Author(s):  
Hans C. Mayer ◽  
Rouslan Krechetnikov

While the classical problem of a flat plate impact on a water surface at zero dead-rise angle has been studied for a long time both theoretically and experimentally, it still presents a number of challenges and unsolved questions. Hitherto, the details of the flow field – especially at early times and close to the plate edge, where the classical inviscid theory predicts a singularity in the velocity field and thus in the free surface deflection, so-called ejecta – have not been studied experimentally, which led to mutually contradicting suppositions in the literature. On one hand, it motivated Yakimov’s self-similar scaling near the plate edge. On the other hand, a removal of the singularity was previously suggested with the help of the Kutta–Joukowsky condition at the plate edge, i.e. enforcing the free surface to depart tangentially to the plate. In the present experimental study we were able to overcome challenges with optical access and investigate, for moderate Reynolds ($0.5<Re<25\,000$) and Weber ($1<We<800$) numbers, both the flow fields and the free surface dynamics at the early stage of the water impact, when the penetration depth is small compared to the plate size, thus allowing us to compare to the classical water impact theory valid in the short time limit. This, in particular, enabled us to uncover the effects of viscosity and surface tension on the velocity field and ejecta evolution usually neglected in theoretical studies. While we were able to confirm the far-field inviscid and the near-edge Stokes theoretical scalings of the free surface profiles, Yakimov’s scaling of the velocity field proved to be inapplicable and the Kutta–Joukowsky condition not satisfied universally in the studied range of Reynolds and Weber numbers. Since the local near-edge phenomena cannot be considered independently of the complete water impact event, the experiments were also set up to study the entirety of the water impact phenomena under realistic conditions – presence of air phase and finite depth of penetration. This allowed us to obtain insights also into other key aspects of the water impact phenomena such as air entrapment and pocketing at the later stage when the impactor bottoms out. In our experiments the volume of trapped air proved not to decrease necessarily with the impact speed, an effect that has not been reported before. The observed fast initial retraction of the trapped air film along the plate bottom turned out to be a consequence of a negative pressure impulse generated upon the abrupt deceleration of the plate. This abrupt deceleration is also the cause of the subsequent air pocketing. Quantitative measurements are complemented with basic scaling models explaining the nature of both retraction of the trapped air and air pocket formation.


Sign in / Sign up

Export Citation Format

Share Document