scholarly journals Overexpression of PAX8-AS1 Inhibits Malignant Phenotypes of Papillary Thyroid Carcinoma Cells via miR-96-5p/PKN2 Axis

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ping Zhou ◽  
Tongdao Xu ◽  
Hao Hu ◽  
Fei Hua

Background. Thyroid carcinoma (THCA) is the most frequent endocrine malignancy. Papillary thyroid carcinoma (PTC) is the major subtype of THCA, accounting for over 80% of all THCA cases. LncRNA PAX8-AS1, a tumor suppressor associated with various human cancers, has been reported to be relevant to the regulation of all sorts of cellular processes. The purpose of this study was to verify the role of PAX8-AS1 in PTC. Methods. Three human PTC cell lines (K1, TPC-1, and IHH4) and one normal human thyroid cell line, Nthy-ori3-1, were used in our study. The expression of genes was detected by qRT-PCR. The bioinformatic analysis and luciferase reporter assay were used to confirm the binding relationship of PAX8-AS1 to miR-96-5p, and the targeting relationship of miR-96-5p to PKN2 was also predicted. Cell proliferation and apoptosis capacities were assessed by MTT and flow cytometry, respectively. EdU assay was used to detect cell proliferation. Western blot assay was employed to examine protein expression. Results. The expression of PAX8-AS1 was decreased in PTC tissues and cells. PAX8-AS1 overexpression inhibited the proliferation of PTC cells and promoted cell apoptosis. In addition, PAX8-AS1 bonds with miR-96-5p, whose downregulation elevated the expression of PKN2 in PTC cells. Importantly, according to the rescue experiments, PKN2 silencing partially reversed the inhibitory effects of PAX8-AS1 expression on PTC cell proliferation and apoptosis. Conclusions. We found that the PAX8-AS1/miR-96-5p/PKN2 axis was closely related to the progression of PTC, which could be a potential target for treating PTC patients.

2017 ◽  
Vol 41 (3) ◽  
pp. 1229-1239 ◽  
Author(s):  
Cheng Fan ◽  
Wendy Wang ◽  
Ji Jin ◽  
Zhuo Yu ◽  
Xiping Xin

Objectives: We aimed to confirm whether RASSF10 activated the p53 signalling pathway, thereby modulating cell proliferation, migration, invasion, and apoptosis in papillary thyroid carcinoma (PTC) cells. Methods: A total of 108 PTC tissue samples and normal adjacent tissues were obtained. RT-PCR and Western blotting analyses were performed to detect RASSF10 expression, and methylation levels of RASSF10 were estimated by methylation-specific PCR (MSP). We also detected the expression and methylation status of RASSF10 in both a human PTC cell line (K1) and a normal thyroid cell line (FRTL5). After transfection of cells with empty vector pcDNA3.1, pcDNA3.1-RASSF10, p53 siRNA and shRASSF10, Coulter counter, colony-formation, wound healing, Transwell and flow cytometry analyses were performed to examine the role of RASSF10 in cell proliferation, migration, invasion, and apoptosis. Finally, the expression of p53, p21, Bcl-2 and Bax were detected using Western Blotting analyses. Results: RASSF10 expression in PTC tissues was significantly lower and hyper-methylated compared to normal adjacent tissues. In addition, RASSF10 was significantly down-regulated and hyper-methylated in K1 cells compared to FRTL5 cells. In addition, suppressed proliferation and significantly induced apoptosis of K1 cells were observed after transfection with pcDNA3.1-RASSF10 (P < 0.05). Furthermore, RASSF10 activated the p53 signalling pathway and regulated the expression of p53, p21, Bcl-2 and Bax. Furthermore, p53 siRNA could antagonize the effects of RASSF10 in K1 cells. Conclusions: RASSF10 induces apoptosis in PTC cells by activating the p53 signalling pathway, indicating its role as a treatment target for PTC.


2021 ◽  
pp. 172460082110431
Author(s):  
Xiaohui Wen ◽  
Jingyan Du ◽  
Xun Wang

Background Papillary thyroid carcinoma is the most frequent histological subtype of thyroid cancer with a high incidence. We aimed to explore the function of circular RNA_0039411 (circ_0039411) and its associated mechanism in papillary thyroid carcinoma progression. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to determine the expression of RNA and protein, respectively. The colony formation ability, migration, invasion, and apoptosis were analyzed by colony formation assay, transwell migration assay, transwell invasion assay, and flow cytometry. Cell glycolytic metabolism was analyzed using fluorescence-based glucose assay kit and fluorescence-based lactate assay kit. Dual-luciferase reporter assay and RNA-Pull-Down Assay were performed to validate the binding between microRNA-423-5p (miR-423-5p) and circ_0039411 or SRY-box transcription factor 4 (SOX4). The xenograft tumor model was used to assess the role of circ_0039411 in the tumor growth in vivo. Results Circ_0039411 was highly expressed in papillary thyroid carcinoma tissues and cell lines compared with adjacent normal tissues and NTHY-ORI3.1 cells. Circ_0039411 interference suppressed the colony formation ability, migration, invasion, and glycolysis but promoted the apoptosis of papillary thyroid carcinoma cells. MiR-423-5p was a target of circ_0039411 in papillary thyroid carcinoma cells. Circ_0039411 knockdown-mediated effects in papillary thyroid carcinoma cells were largely overturned by the silence of miR-423-5p. MiR-423-5p bound to the 3′ untranslated region (3′UTR) of SOX4. SOX4 overexpression largely reversed circ_0039411 silencing-mediated effects in papillary thyroid carcinoma cells. Circ_0039411 positively regulated SOX4 expression by sponging miR-423-5p in papillary thyroid carcinoma cells. Circ_0039411 silencing notably suppressed the growth of xenograft tumors in vivo. Conclusion Circ_0039411 promoted the malignant behaviors of papillary thyroid carcinoma cells partly depending on the regulation of the miR-423-5p/SOX4 axis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yonglian Huang ◽  
Hengwei Zhang ◽  
Lidong Wang ◽  
Chenxi Liu ◽  
Mingyue Guo ◽  
...  

Abstract Background Papillary thyroid carcinoma (PTC), with a rapidly increasing incidence, is the most prevalent malignant cancer of the thyroid. However, its pathogenesis is unclear and its specific clinical indicators have not yet been identified. There is increasing evidence that microRNAs (miRNAs) play important roles in tumor occurrence and progression. Specifically, miR-613 participates in the regulation of tumor development in various cancers; however, its effects and mechanisms of action in PTC are still unclear. Therefore, in this study, we investigated the expression and function of miR-613 in PTC. Methods qRT-PCR was used to determine miR-613 expression in 107 pairs of PTC and adjacent-normal tissues as well as in PTC cell lines and to detect TAGLN2 mRNA expression in PTC tissues and adjacent normal tissues. Western blot analysis was performed to identify TAGLN2 and epithelial–mesenchymal transition (EMT) biomarkers. The effects of miR-613 on PTC progression were evaluated by performing MTS, wound-healing, and Transwell assays in vitro. Luciferase reporter assays were also performed to validate the target of miR-613. Results In PTC, miR-613 was significantly downregulated and its low expression level was associated with cervical lymph node metastasis. However, its overexpression significantly suppressed PTC cell proliferation, migration, and invasion and inhibited EMT. TAGLN2 was identified as a target of miR-613, which also significantly inhibited the expression of TAGLN2. Further, the restoration of TAGLN2 expression attenuated the inhibitory effects of miR-613 on PTC cell proliferation and metastasis. Conclusion Our findings demonstrated that miR-613 can suppress the progression of PTC cells by targeting TAGLN2, indicating that miR-613 plays the role of a tumor suppressor in PTC. Overall, these results suggest that the upregulation of miR-613 is a promising therapeutic strategy for PTC.


2020 ◽  
Vol 29 ◽  
pp. 096368972091830 ◽  
Author(s):  
Ping Zhou ◽  
Andrew Irving ◽  
Huifang Wu ◽  
Juan Luo ◽  
Johana Aguirre ◽  
...  

Given the crucial role of microRNAs in the cellular proliferation of various types of cancers, we aimed to analyze the expression and function of a cellular proliferation-associated miR-188-5p in papillary thyroid carcinoma (PTC). Here we demonstrate that miR-188-5p is downregulated in PTC tumor tissues compared with the associated noncancerous tissues. We also validate that the miR-188-5p overexpression suppressed the PTC cancer cell proliferation. In addition, fibroblast growth factor 5 (FGF5) is observed to be downregulated in the PTC tumor tissues compared with the associated noncancerous tissues. Subsequently, FGF5 is identified as the direct functional target of miR-188-5p. Moreover, the silencing of FGF5 was found to inhibit PTC cell proliferation, which is the same pattern as miR-188-5p overexpression. These results suggest that miR-188-5p-associated silencing of FGF5 inhibits tumor cell proliferation in PTC. It also highlights the importance of further evaluating miR-188-5p as a potential biomarker and therapy target in PTC.


2018 ◽  
Vol 26 (1) ◽  
pp. 355-364 ◽  
Author(s):  
Xiaolin Yang ◽  
Geling Liu ◽  
Luyang Zang ◽  
Ding Li ◽  
Fang Yu ◽  
...  

Author(s):  
Dumitru A Iacobas

Publically available (own) transcriptomic data were re-analyzed to quantify the alteration of functional pathways in the thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data were generated from one case of papillary thyroid carcinoma (PTC) and from genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric perspective that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase of the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that its experimental overexpression may force the PTC cells into apoptosis with negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cells before and after lentiviral transfection with DDX19B.


2001 ◽  
Vol 86 (5) ◽  
pp. 2170-2177 ◽  
Author(s):  
Kazuyasu Ohta ◽  
Toyoshi Endo ◽  
Kazutaka Haraguchi ◽  
Jerome M. Hershman ◽  
Toshimasa Onaya

Ligands for peroxisome proliferator-activated receptor γ (PPARγ) induce apoptosis and exert antiproliferative effects on several carcinoma cell lines. The present study investigates the expression of PPARγ and the possibility that agonists for PPARγ also inhibit the growth of human thyroid carcinoma cells. We examined this hypothesis using six cell lines, designated BHP thyroid carcinoma cells, which originated from patients with papillary thyroid carcinoma. RT-PCR analysis revealed that the thyroid carcinoma cell lines BHP2–7, 7–13, 10–3, and 18–21 express PPARγ. More PPARγ was expressed in carcinoma than in adjacent normal thyroid tissue in three of six samples of human papillary carcinoma of the thyroid. PPARγ-positive thyroid carcinoma cells were treated with agonists of PPARγ, troglitazone, BRL 49653, and 15-deoxy-Δ12,14-prostaglandin J2. Troglitazone (10μ mol/L), BRL 49653 (10 μmol/L), and 15-deoxy-Δ12,14-prostaglandin J2 (1 μg/mL) decreased[ 3H]thymidine incorporation and reduced cell number, respectively, in BHP carcinoma cell lines that expressed PPARγ. Under low serum conditions, ligands for PPARγ induced condensation of the nucleus and fragmentation of chromatin into nucleosome ladders. These findings indicate that the death of thyroid carcinoma cells is a form of apoptosis. To investigate the molecular mechanism of the apoptosis, we assessed expression of the apoptosis-regulatory genes bcl-2, bax, and c-myc. Troglitazone significantly increased the expression of c-myc messenger RNA but had no effect on the expression of bcl-2 and bax in thyroid carcinoma cells. These results suggest that, at least in part, the induction of apoptosis in human papillary thyroid carcinoma cells may be due to an increase of c-myc. Troglitazone (500 mg/kg·day) significantly inhibited tumor growth and prevented distant metastasis of BHP18–21 tumors in nude mice in vivo. Taken together, these results suggest that PPARγ agonist inhibit cell growth of some types of human thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document