scholarly journals Development and Experimental Validation for Quantifying the Moisture Carryover in a Moisture Separator Using an Air/Water Test Facility

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Kihwan Kim ◽  
Wooshik Kim ◽  
Jaebong Lee ◽  
Woo-Jin Jeon

The moisture carryover (MCO) of the primary separator in a steam generator is the most important design parameter to ensure high efficiency in a steam generator. There is an inherent limitation to experimentally evaluate the MCO under the prototype conditions. In this study, the air/water test facility was constructed based on the similarity law, and a new isokinetic system was developed to quantify the MCO. Several experiments were performed for the mass quality ranging from 0.315 to 0.382. The accuracy and versatility of the experimental method was verified experimentally using a full and half scale of separators. The test results were compared with the prototype results. It was proved to be a reliable experimental method for evaluating the MCO of the moisture separator.

1988 ◽  
Vol 110 (1) ◽  
pp. 38-44 ◽  
Author(s):  
W. A. Allman ◽  
D. C. Smith ◽  
C. R. Kakarala

This paper describes the design and testing of the Steam Generator Subsystem (SGS) for the Molten Salt Electric Experiment at Sandia Laboratories in Albuquerque, New Mexico. The Molten Salt Electric Experiment (MSEE) has been established at the Department of Energy’s five megawatt thermal Solar Central Receiver Test Facility, to demonstrate the feasibility of the molten salt central receiver concept. The experiment is capable of generating 0.75 megawatts of electric power from solar energy, with the capability of storing seven megawatt-hours of thermal energy. The steam generator subsystem transfers sensible heat from the solar-heated molten nitrate salt to produce steam to drive a conventional turbine. This paper discusses the design requirements dictated by the steam generator application and also reviews the process conditions. Details of each of the SGS components are given, featuring the aspects of the design and performance unique to the solar application. The paper concludes with a summary of the test results confirming the overall design of the subsystem.


Author(s):  
T. S. Kwon ◽  
B. J. Yun ◽  
C. H. Song ◽  
K. Y. Choi ◽  
H. K. Cho

The comparison tests for the direct ECC bypass fraction were experimentally performed with a typical DVI nozzle and an ECC column nozzle having injection angle to the gravity axis. The ECC column nozzle is newly introduced to make an ECC water column in the downcomer region. The injection angle of the ECC water relative to the gravity axis is varied from 0 to ±90 degrees stepped by 45 degrees. The tests are performed in the air-water separate effect test facility (DIVA), which is 1/7.07 linearly scaled-down of the APR1400 nuclear reactor. The test results show that the direct ECC bypass fraction is affected by the ECC injection angle when the ECC water is injected using an ECC column nozzle as a single water column. The injection angle of an ECC water column relative to the circumferential air jet in the DVI system affects the direct ECC bypass fraction during the reflood phase of a LBLOCA.


Author(s):  
K. Takeishi ◽  
H. Mori ◽  
K. Tsukagoshi ◽  
M. Takahama

Mitsubishi Heavy industries Ltd. developed a new high efficiency medium-size (25–35MW) gas turbine MF-221 to be used in a cogeneration plant. This gas turbine is an upscaled design of the MF-111 model, which has accumulated an operation experience of more than 1,020,000hrs. The improvement of performance and reliability was made possible by technology transfer from the latest 501F/701F gas turbine with respect to compressor and turbine aerodynamics, materials, coating and turbine cooling technology. The MF-221 has a base load rating of 30MW at 1250°C turbine inlet temperature. Its thermal efficiency is 32% and 45% for simple and combined cycle application, respectively. It consists of a single shaft, 17-stage axial compressor, 10 can-type combustors and a 3-stage axial turbine. The prototype engine has been tested in a full-load test facility at Takasago Machinery Works to confirm the efficiency and the reliability of all parts exposed to high temperatures.


Author(s):  
B. J. Yun ◽  
T. S. Kwon ◽  
D. J. Euh ◽  
I. C. Chu ◽  
C.-H. Song ◽  
...  

One of the advanced design features of the APR-1400, direct vessel injection (DVI) system is being considered instead of conventional cold leg injection (CLI) system. It is known that the DVI system greatly enhances the reliability of the emergency core cooling (ECC) system. However, there is still a dispute on its performance in terms of water delivery to the reactor core during the reflood phase of a large-break loss-of-coolant accident (LOCA). Thus, experimental validation is in progress. In this paper, test results of a direct ECC bypass performed in the steam-water test facility called MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) is presented. The test condition is determined, based on the preliminary analysis of TRAC code, by applying the ‘modified linear scaling method’ with the 1/4.93 length scale. From the tests, ECC direct bypass fraction, steam condensation rate and information on the flow distribution in the upper annulus downcomer region is obtained.


1963 ◽  
Vol 85 (4) ◽  
pp. 302-310
Author(s):  
W. A. Fritz ◽  
L. Cohen

The Naval Boiler and Turbine Laboratory has recently completed an evaluation and development program of a supercharged steam generator system. The installation for this program was the only one of its type in the United States. The agenda developed and the test facility and instrumentation system designed were specifically adapted to the requirements of a supercharged system. Modifications required during the development and the test results obtained are briefly discussed. As a result of this program, supercharged steam generators are being installed in the Navy’s DE1040 Class ships.


1983 ◽  
Vol 105 (2) ◽  
pp. 348-353 ◽  
Author(s):  
D. E. Wright ◽  
L. L. Tignac

Rocketdyne is under contract to the Department of Energy for the development of heat exchanger technology that will allow coal to be burned for power generation and cogeneration applications. This effort involves both atmospheric fluidized bed and pulverized coal combustion systems. In addition, the heat exchanger designs cover both metallic and ceramic materials for high-temperature operations. This paper reports on the laboratory and small AFB test results completed to date. It also covers the design and installation of a 6×6 ft atmospheric fluidized bed test facility being used to correlate and expand the knowledge gained from the initial tests. The paper concludes by showing the direction this technology is taking and outlining the steps to follow in subsequent programs.


Author(s):  
Alan R. May Estebaranz ◽  
Richard J. Williams ◽  
Simon I. Hogg ◽  
Philip W. Dyer

A laboratory scale test facility has been developed to investigate deposition in steam turbines under conditions that are representative of those in steam power generation cycles. The facility is an advanced two-reactor vessel test arrangement, which is a more flexible and more accurately controllable refinement to the single reactor vessel test arrangement described previously in ASME Paper No. GT2014-25517 [1]. The commissioning of the new test facility is described in this paper, together with the results from a series of tests over a range of steam conditions, which show the effect of steam conditions (particularly steam pressure) on the amount and type of deposits obtained. Comparisons are made between the test results and feedback/experience of copper fouling in real machines.


1984 ◽  
Vol 45 (C1) ◽  
pp. C1-101-C1-104
Author(s):  
T. Ando ◽  
S. Shimamoto ◽  
T. Hiyama ◽  
H. Tsuji ◽  
Y. Takahashi ◽  
...  

An extended test of a 60-cm-bore Nb3Sn coil (TMC-I), constructed as a development of superconducting toroidal coil in tokamak machine, has been carried out in the cluster test facility. A 192-cm-length (one turn) normal zone, nucleated by a heat-input in the innermost turn, is recovered to superconducting state at 6 kA and 10 T. For the manual dump with a decay time constant of 6.6 sec (B = 1.0 T/sec), no damage is found on the TMC-I. In addition, a out-of-plane force mode operation, using one of the cluster test coils, is done with no trouble. With these good results, the first stage in TMC-I test was completed. And as the next stage, up-grading the cluster test facility for further TMC-I test in 11 T is now going ahead.


Author(s):  
Andrew J. Provenza ◽  
Carlos R. Morrison

A novel wireless device which transfers supply power through induction to rotating operational amplifiers and transmits low voltage AC signals to and from a rotating body by way of radio telemetry has been successfully demonstrated in the NASA Glenn Research Center (GRC) Dynamic Spin Test Facility. In the demonstration described herein, a rotating operational amplifier provides controllable AC power to a piezoelectric patch epoxied to the surface of a rotating Ti plate. The amplitude and phase of the sinusoidal voltage command signal, transmitted wirelessly to the amplifier, was tuned to completely suppress the 3rd bending resonant vibration of the plate. The plate’s 3rd bending resonance was excited using rotating magnetic bearing excitation while it spun at slow speed in a vacuum chamber. A second patch on the opposite side of the plate was used as a sensor. This paper discusses the characteristics of this novel device, the details of a spin test, results from a preliminary demonstration, and future plans.


Sign in / Sign up

Export Citation Format

Share Document