scholarly journals A Noise-Tolerant Audio Encryption Framework Designed by the Application of S8 Symmetric Group and Chaotic Systems

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Haris Aziz ◽  
Syed Mushhad Mustuzhar Gilani ◽  
Iqtadar Hussain ◽  
Abdul Kashif Janjua ◽  
Shahzada Khurram

The recent decade has witnessed an exponential surge of digital content, especially multimedia and its applications. The security requirements of these innovative platforms necessitate the significance of enhancing advanced encryption schemes. In this paper, a novel encryption scheme is presented for real-time audio applications. The framework of the proposed scheme is grounded on the principles of confusion and diffusion. The confusion incorporates nonlinearity by the application of Mordell elliptic curves (MEC) and a symmetric group of permutations S8. The endurance of the proposed scheme is further enriched through the application of chaotic maps. The proposed scheme is intended to cater requirements of real-time voice communications in defense applications particularly warzones. The adoption of a modular design and fusion of chaotic maps makes the algorithm viable for numerous real-time audio applications. The security can further be enriched by incorporating additional rounds and number of S-boxes in the algorithm. The security and resistance of the algorithm against various attacks are gaged through performance evaluation and security measurements. The audio encryption scheme has the ability to tolerate noise triggered by a channel or induced by an invader. The decryption was successful and the resultant output was audible for noisy data. The overall results depict that the proposed audio encryption scheme contains an excellent cryptographic forte with the minimum computational load. These characteristics allow the algorithm to be a hotspot for modern robust applications.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


2012 ◽  
Vol 546-547 ◽  
pp. 1415-1420
Author(s):  
Hai Yong Bao ◽  
Man De Xie ◽  
Zhen Fu Cao ◽  
Shan Shan Hong

Mobile communication technologies have been widely utilized in daily lives, many low-computing-power and weakly-structured-storage devices have emerged, such as PDA, cell phones and smart cards, etc. How to solve the security problems in such devices has become a key problem in secure mobile communication. In this paper, we would like to propose an efficient signature-encryption scheme. The security of the signature part is not loosely related to Discrete Logarithm Problem (DLP) assumption as most of the traditional schemes but tightly related to the Decisional Diffie-Hellman Problem (DDHP) assumption in the Random Oracle Models. Different from the existing solutions, our scheme introduces a trusted agent of the receiver who can filter the “rubbish” messages beforehand. Thus, with high efficiency in computation and storage, it is particularly suitable for the above mobile devices with severely constrained resources and can satisfy the security requirements of mobile computations.


2018 ◽  
Vol 78 (8) ◽  
pp. 10373-10400 ◽  
Author(s):  
Sukalyan Som ◽  
Abhijit Mitra ◽  
Sarbani Palit ◽  
B. B. Chaudhuri

2021 ◽  
pp. 1-15
Author(s):  
V. Muhammed Anees ◽  
G. Santhosh Kumar

Crowd behaviour analysis and management have become a significant research problem for the last few years because of the substantial growth in the world population and their security requirements. There are numerous unsolved problems like crowd flow modelling and crowd behaviour detection, which are still open in this area, seeking great attention from the research community. Crowd flow modelling is one of such problems, and it is also an integral part of an intelligent surveillance system. Modelling of crowd flow has now become a vital concern in the development of intelligent surveillance systems. Real-time analysis of crowd behavior needs accurate models that represent crowded scenarios. An intelligent surveillance system supporting a good crowd flow model will help identify the risks in a wide range of emergencies and facilitate human safety. Mathematical models of crowd flow developed from real-time video sequences enable further analysis and decision making. A novel method identifying eight possible crowd flow behaviours commonly seen in the crowd video sequences is explained in this paper. The proposed method uses crowd flow localisation using the Gunnar-Farneback optical flow method. The Jacobian and Hessian matrix analysis along with corresponding eigenvalues helps to find stability points identifying the flow patterns. This work is carried out on 80 videos taken from UCF crowd and CUHK video datasets. Comparison with existing works from the literature proves our method yields better results.


Author(s):  
Hu Chen ◽  
Yupu Hu ◽  
Zhizhu Lian ◽  
Huiwen Jia ◽  
Xu An Wang

Fully homomorphic encryption schemes available are not efficient enough to be practical, and a number of real-world applications require only that a homomorphic encryption scheme is somewhat homomorphic, even additively homomorphic and has much larger message space for efficiency. An additively homomorphic encryption scheme based heavily on Smart-Vercauteren encryption scheme (SV10 scheme, PKC 2010) is put forward, where both schemes each work with two ideals I and J. As a contribution of independent interest, a two-element representation of the ideal I is given and proven by factoring prime numbers in a number field. This two-element representation serves as the public key. The authors' scheme allows working over much larger message space than that of SV10 scheme by selecting the ideal I with larger decryption radius to generate public/private key pair, instead of choosing the ideal J as done in the SV10 scheme. The correctness and security of the scheme are shown, followed by setting parameters and computational results. The results indicate that this construction has much larger message space than SV10 scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Fernando Nakayama ◽  
Paulo Lenz ◽  
Stella Banou ◽  
Michele Nogueira ◽  
Aldri Santos ◽  
...  

Smart health (s-health) is a vital topic and an essential research field today, supporting the real-time monitoring of user’s data by using sensors, either in direct or indirect contact with the human body. Real-time monitoring promotes changes in healthcare from a reactive to a proactive paradigm, contributing to early detection, prevention, and long-term management of health conditions. Under these new conditions, continuous user authentication plays a key role in protecting data and access control, once it focuses on keeping track of a user’s identity throughout the system operation. Traditional user authentication systems cannot fulfill the security requirements of s-health, because they are limited, prone to security breaches, and require the user to frequently authenticate by, e.g., a password or fingerprint. This interrupts the normal use of the system, being highly inconvenient and not user friendly. Also, data transmission in current authentication systems relies on wireless technologies, which are susceptible to eavesdropping during the pairing stage. Biological signals, e.g., electrocardiogram (ECG) and electroencephalogram (EEG), can offer continuous and seamless authentication bolstered by exclusive characteristics from each individual. However, it is necessary to redesign current authentication systems to encompass biometric traits and new communication technologies that can jointly protect data and provide continuous authentication. Hence, this article presents a novel biosignal authentication system, in which the photoplethysmogram (PPG) biosignal and a galvanic coupling (GC) channel lead to continuous, seamless, and secure user authentication. Furthermore, this article contributes to a clear organization of the state of the art on biosignal-based continuous user authentication systems, assisting research studies in this field. The evaluation of the system feasibility presents accuracy in keeping data integrity and up to 98.66% accuracy in the authentication process.


Sign in / Sign up

Export Citation Format

Share Document