A Series of Frequency Shift Antennas Based on Shape Blending

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Aiting Wu ◽  
Yuebin Sun ◽  
Pengquan Zhang ◽  
Tiejun Du

In this paper, an automatic antenna design method based on the shape blending algorithm is proposed. The algorithm is used to construct the shape of the wide slot of a CPW-fed antenna. Firstly, two basic shapes are chosen as the initial shape and the target shape. The shape blending process is then applied on them to get a series of shapes, which are used as the geometry structure of the wide slot. In this way, a series of CPW-fed wide slot antennas are obtained. And they have similar but gradually changing characteristics. The bandwidth ranges are 8.00–9.24 GHz, 7.95–9.05 GHz, 7.05–8.55 GHz, 6.95–8.13 GHz, and 6.55–7.50 GHz, respectively. The overall size of the antenna is 26 mm  ∗  20 mm  ∗  0.6 mm. Experimental results show that the resonant frequencies vary (via translation) with the change of slot shape in a specific frequency band. The experiments also validate that the antennas have omnidirectional radiation characteristics. The radiation gains and aperture efficiencies of the antennas are about 3.8–5.5 dBi and 57.7–83.0% at their centre frequencies, respectively. The experiment results show that the proposed antennas could be used in C-band and X-band radar applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Aiting Wu ◽  
Zhonghai Zhang ◽  
Boran Guan ◽  
Liang Peng

When designing printed wide-slot antennas, the shape or profile of the tuning stub is a key geometric structure that affects the impedance bandwidth of the antenna. This article introduces a new process for designing tuning stub shapes, which are the blended results of a diamond and a circle. By using different geometry shapes, the design could generate a series of bandwidths with a regular trend. Detailed investigations and analysis were conducted on some key geometry parameters to explore their impact on the impedance bandwidth of the antenna. To certify the new design method, several prototypes were simulated, developed, and measured. The experimental and simulated results showed good agreement with each other. The results indicate that by properly selecting various blended shapes, a BW range from 80.1 to 117.3% for a VSWR of less than 2 could be obtained, which provides a convenient model for a wideband antenna design.



A monopole microstrip rectangular patch with dumbbell shape slotted on ground for multiple band, enhance the bandwidth. The proposed antenna is fabricated on FR 4 epoxy material with electrical permittivity of 4.4 and magnetic permeability 1.The dimensions of proposed antenna are 70 x 50 x 1.6 mm3 and the dumbbell shape is slotted on ground of substrate which resonates at four different frequencies 5.9 GHz, 7 GHz, 8.7 GHz and 9.7 GHz. The proposed antenna has bandwidths of 200 MHz 300 MHz, 300 MHz, 300 MHz at four resonant frequencies The proposed antenna covers 4/8 GHz C band, 8/12 GHz X band and used in radar, satellite communications. The reflection coefficient (S11), radiation characteristics, peak gain and VSWR of designed antenna are described



A spiral fork shaped hexagonal micro strip patch antenna is designed to operate at different frequencies, which are in ultra-wide band range (3.1-10.6GHz). The newly presented antenna is simulated on a Flame Retardant - 4 (FR4) epoxy material with dielectric constant 4.4and overall size of structure is 28*28mm2 . Coplanar waveguide feeding (CPW) is used in this design for easy simulation. This proposed triband structure resonates at 1.36GHz, 5.74GHz and 8.8GHz. The proposed pentaband antenna resonates at 2.38GHz, 3.64GHz, 6.76GHz, 7.36GHz and 8.98GHz with corresponding impedance bandwidths are 200MHz, 70MHz, 170MHz, 520MHz and 420MHz. The peak gains at their resonant frequencies are 1.77dB, 2.45dB, 3.53dB, 4.54dB and 2.28dB respectively with good radiation characteristics. These antennas are suitable for S - , C - and X - band applications.



2019 ◽  
Vol 8 (2) ◽  
pp. 2194-2200

The emerging advanced wireless communication technology desires more compact, multiband, moderate gain antennas. These features can be accomplished by designing of the Fractal antennas with advanced features. This paper introduces a Modified Sierpinski Fractal antenna with compact, multiband and moderate gain specifications with an embedded Rectangular slot on the regular Sierpinski triangle . The fractalisation is extended from 0 to 4 iterations to examine the radiation characteristics. Two substrate materials ARLON, FR4-epoxy are considered individually with Ԑr values 2.2, 4.4 respectively and the height of the substrate is chosen as 1.6 mm. The efficient tool ANSYS HFSS High frequency structure simulator software package is used to design and simulate the proposed antenna structure in the frequency band of 1 to 10 GHz. The simulation results are reported and studied for all the four iterations in which the 4th iteration final geometry possess better results with 4 resonant frequencies that resonates in C band and X band in case of ARLON whereas 6 resonant frequencies obtained in the same frequency bands in case of FR4 epoxy. The multiband behavior can make these structures to serve in Satellite, Military and Radar wireless communications. The resultant gain values are also maximum about 13.67dB for ARLON and 7.69 dB for FR4-epoxy materials. It is also observed that the percentage of miniaturization of about 71.53% is obtained with this modified rectangular slotted fractal geometry, suitable to multiband applications.





Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2614
Author(s):  
Qian Yang ◽  
Shuangyang Liu ◽  
Hongyu Shi ◽  
Kai-Da Xu ◽  
Xinyue Dai ◽  
...  

A corrugated disk resonator with eight grooves is proposed for wideband bandpass filter (BPF) design. Due to the spoof localized surface plasmons resonances of the corrugated metallic structure, the dipole, quadrupole, hexapole modes, and a fundamental mode excited by the introduced short-circuited via holes are employed to realize four transmission poles (TPs) in the passband. The theoretical analysis is described by the electric field and current distributions on the resonator. The resonant frequencies can be tuned easily by the parameters of the structure, which can be used to adjust the center frequency and bandwidth of the BPF freely. Furthermore, two resonators are cascaded to obtain eight TPs to improve the selectivity performance. Finally, three fabricated filters demonstrate the design method.



Sign in / Sign up

Export Citation Format

Share Document