scholarly journals Numerical Research of the Submerged High-Pressure Cavitation Water Jet Based on the RANS-LES Hybrid Model

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yongfei Yang ◽  
Weidong Shi ◽  
Linwei Tan ◽  
Wei Li ◽  
Songping Chen ◽  
...  

The submerged high-pressure water jet has the characteristics of high velocity, strong turbulence, and severe cavitation. In order to reveal the formation mechanism of shear cavitation in the submerged high-pressure water jet and to grasp the turbulent structure and velocity distribution characteristics in the jet, the prediction ability of different turbulence models is studied first. The models represent the RANS model and RANS-LES hybrid model which are used to simulate the same cavitation jet, and the results are compared with the experimental results. The most reasonable model is then used to investigate the submerged high-pressure cavitation jet with different cavitation numbers. It is found that the calculation accuracy for small-scale vortexes has a great influence on the prediction accuracy of cavitation in the submerged jet. Both the DDES model and the SBES model can effectively capture the vortexes in the shear layer, and the SBES model can obtain more turbulence details. The result of the simulation under different cavitation numbers using the SBES model agrees well with the experimental result. Under the condition with low cavitation number, an intensive shear layer is formed at the exit of the nozzle, and small-scale vortexes are distributed along the shear layer. Mass transfer rate is relatively high in the region with a stronger vortex, which confirms that the low pressure in the vortex center is the main reason for the generation of cavitation in the shear layer. With the decrease of the cavitation number, the cavitation intensity increases obviously, while the nondimensional velocity along the radial direction changes little, which follows an exponential function.

2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Zeng-qiang Yang ◽  
Chang Liu ◽  
Feng-shuo Li ◽  
Lin-ming Dou ◽  
Gang-wei Li ◽  
...  

1988 ◽  
Vol 4 (4) ◽  
pp. 340-343 ◽  
Author(s):  
John H. Posselius ◽  
Jr.. Glenn T. Conklin

2011 ◽  
Vol 462-463 ◽  
pp. 774-779
Author(s):  
Hu Si ◽  
Xiao Hong Li ◽  
Yan Ming Xie

The high pressure waterjet is widely applied for mine industry, mechanical manufacture, environmental engineering, and medicine field due to its particular characteristic. Recently, the application of high pressure waterjet for gas drainage in mine has been receiving increasing attention with the development of exploitative technology. The micro-damage mechanism of coal under high pressure water jet is key to drain gas effectively. Based on damage mechanics and rock dynamics, the paper analyzed the micro-structure deformation and damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model. Further, on the assumption of that rock was homogeneous and isotropic, a computational model was established based on the Arbitrary Lagrangian Eulerian (ALE) fluid-solid coupling penalty function method. The rock damage under high pressure water jet was simulated by the dynamic contact method. The results showed that the damage and breakage of ruck was mainly attributed to impacting effect and was characterized by local effect, and the evolvement of rock breakage went through three stages and the figure of rock breakage trended a funnel. On the whole, numerical results agreed with experimental results.


2015 ◽  
Vol 126 ◽  
pp. 295-299 ◽  
Author(s):  
Hailong Chen ◽  
Zhaomin Li ◽  
Zhihan Gao ◽  
Yuanyuan Sun

Sign in / Sign up

Export Citation Format

Share Document