scholarly journals Proposing a Density-Based Clustering Approach (DBCA) to Aggregate Data Collected from the Environment in Arid Area for Desertification

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhihao Peng ◽  
Raziyeh Daraei ◽  
Seyed Mojtaba Ahmadpanahi ◽  
Amir Seyed Danesh ◽  
Safieh Siadat ◽  
...  

Nowadays, the expansion of desert areas has become one of the main problems in arid areas due to various reasons such as rising temperatures and vegetation fires. Establishment of wireless sensor networks in these areas can accelerate the process of environmental monitoring and integrate temperature and humidity information sending to base stations in order to make basic decisions on desertification. The main problem in this regard is the energy limitation of sensor nodes in wireless sensor networks, which is one of the main challenges in using these nodes due to the lack of a fixed power supply. Because the node consumes the most energy during data transmission, the node that transmits the most data or sends the packets over long distances runs out of energy faster than the others and the network work process is disrupted. Therefore, in this study, a density-based clustering approach is proposed to integrate data collected from the environment in arid areas for desertification. In the proposed method at each step, the node that has the most residual energy and is highly centralized will be selected to transfer information. The results of experiments for evaluating the performance of the proposed method show that the proposed method balances the energy consumption of the nodes and optimizes the lifespan of the nodes in the wireless sensor network installed in the arid area.

Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Author(s):  
Dina M. Ibrahim ◽  
Nada M. Alruhaily

With the rise of IOT devices and the systems connected to the internet, there was, accordingly, an ever-increasing number of network attacks (e.g. in DOS, DDOS attacks). A very significant research problem related to identifying Wireless Sensor Networks (WSN) attacks and the analysis of the sensor data is the detection of the relevant anomalies. In this paper, we propose a framework for intrusion detection system in WSN. The first two levels are located inside the WSN, one of them is between sensor nodes and the second is between the cluster heads. While the third level located on the cloud, and represented by the base stations. In the first level, which we called light mode, we simulated an intrusion traffic by generating data packets based on TCPDUMP data, which contain intrusion packets, our work, is done by using WSN technology. We used OPNET simulation for generating the traffic because it allows us to collect intrusion detection data in order to measure the network performance and efficiency of the simulated network scenarios. Finally, we report the experimental results by mimicking a Denial-of-Service (DOS) attack. <em> </em>


2021 ◽  
Vol 17 (4) ◽  
pp. 1-29
Author(s):  
Tuo Shi ◽  
Zhipeng Cai ◽  
Jianzhong Li ◽  
Hong Gao

The energy limitation of wireless sensors limits the lifetime of the traditional wireless sensor networks. The <b>Battery-Free Sensor Network (BF-WSN)</b> is a new network architecture proposed in recent years to address the limitation of wireless sensor networks. In a BF-WSN, the battery-free node can harvest energy from the ambient environment, and thus the lifetime of a BF-WSN is unlimited in terms of energy. The coverage quality is an important measurement of BF-WSNs. Considering the specific features of BF-WSNs, we propose a new deployment concept for BF-WSNs, named <i>Joint Deployment</i>. It aims to determine the locations and working schedules of sensor nodes to maximize network coverage quality. Based on the joint deployment concept, we propose a new deployment problem of battery-free sensor nodes. We prove that this problem is at least NP-Hard. We also analyze the upper bound of this problem. Furthermore, we propose an approximated algorithm to solve this problem and analyze the time complexity and the ratio bound of the algorithm. Extensive simulations are carried out to examine the performance of the proposed algorithm. The simulation results show that the algorithm is efficient and effective.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Hae Young Lee

In cluster-based wireless sensor networks (WSNs), a few sensor nodes, including cluster heads (CHs), can be physically compromised by a malicious adversary. By using compromised CHs, the adversary can intentionally attach false message authentication codes into legitimate sensing reports in order to interrupt reporting of the real events. The existing solutions are vulnerable to such a type of security attacks, calledmanipulated compilation attacks(MCAs), since they assume that CHs are uncompromised. Thus, the reports manipulated by compromised CHs will be discarded by forwarding nodes or rejected at base stations, so that real events on the fields cannot be properly reported to the users. In this paper, the author proposes a method for the detection of MCAs in cluster-based WSNs. In the proposed method, every sensing report is collaboratively generated and verified by cluster nodes based on very loose synchronization. Once a cluster node has detected an MCA for a real event, it can reforward a legitimate report immediately. Therefore, the event can be properly reported to the users. The performance of the proposed method is shown with analytical and experimental results at the end of the paper.


2016 ◽  
Vol 12 (12) ◽  
pp. 155014771668179
Author(s):  
Linfeng Liu ◽  
Jingli Du ◽  
Dongyue Guo

Underwater wireless sensor networks are the enabling technology for the aquatic environmental monitoring and exploring and have attracted much attention recently. Due to the highly hostile and unpredictable underwater environments, some beacon nodes tend to move or be damaged. Therefore, the unknown nodes will be positioned with larger error, which abases the value of data collected by sensor nodes. In order to solve the beacon error problem, this article proposes an error beacon filtering algorithm based on K-means clustering. First, the coordinate of each beacon is calculated through an improved trilateration method, and then the beacon with the maximum positioning error is filtered out via the K-means clustering algorithm. The remaining beacons repeat the above processes until the distance error of each beacon does not exceed a preset threshold. The analysis of simulation results indicates that the error beacons can be accurately found and filter out through our proposed error beacon filtering algorithm (based on K-means clustering), and thus the localization accuracy is enhanced. Besides, error beacon filtering algorithm also has a provable low complexity.


Author(s):  
Ali Abdul-hussian Hassan ◽  
Wahidah Md Shah ◽  
Mohd Fairuz Iskandar Othman ◽  
Hayder Abdul Hussien Hassan

The clustering approach is considered as a vital method for wireless sensor networks (WSNs) by organizing the sensor nodes into specific clusters. Consequently, saving the energy and prolonging network lifetime which is totally dependent on the sensors battery, that is considered as a major challenge in the WSNs. Classification algorithms such as K-means (KM) and Fuzzy C-means (FCM), which are two of the most used algorithms in literature for this purpose in WSNs. However, according to the nature of random nodes deployment manner, on certain occasions, this situation forces these algorithms to produce unbalanced clusters, which adversely affects the lifetime of the network. Based for our knowledge, there is no study has analyzed the performance of these algorithms in terms clusters construction in WSNs. In this study, we investigate in KM and FCM performance and which of them has better ability to construct balanced clusters, in order to enable the researchers to choose the appropriate algorithm for the purpose of improving network lifespan. In this study, we utilize new parameters to evaluate the performance of clusters formation in multi-scenarios. Simulation result shows that our FCM is more superior than KM by producing balanced clusters with the random distribution manner for sensor nodes.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document