scholarly journals Characterization and miRNA Profiling of Extracellular Vesicles from Human Osteoarthritic Subchondral Bone Multipotential Stromal Cells (MSCs)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Clara Sanjurjo-Rodríguez ◽  
Rachel E. Crossland ◽  
Monica Reis ◽  
Hemant Pandit ◽  
Xiao-nong Wang ◽  
...  

Osteoarthritis (OA) is a heterogeneous disease in which the cross-talk between the cells from different tissues within the joint is affected as the disease progresses. Extracellular vesicles (EVs) are known to have a crucial role in cell-cell communication by means of cargo transfer. Subchondral bone (SB) resident cells and its microenvironment are increasingly recognised to have a major role in OA pathogenesis. The aim of this study was to investigate the EV production from OA SB mesenchymal stromal cells (MSCs) and their possible influence on OA chondrocytes. Small EVs were isolated from OA-MSCs, characterized and cocultured with chondrocytes for viability and gene expression analysis, and compared to small EVs from MSCs of healthy donors (H-EVs). OA-EVs enhanced viability of chondrocytes and the expression of chondrogenesis-related genes, although the effect was marginally lower compared to that of the H-EVs. miRNA profiling followed by unsupervised hierarchical clustering analysis revealed distinct microRNA sets in OA-EVs as compared to their parental MSCs or H-EVs. Pathway analysis of OA-EV miRNAs showed the enrichment of miRNAs implicated in chondrogenesis, stem cells, or other pathways related to cartilage and OA. In conclusion, OA SB MSCs were capable of producing EVs that could support chondrocyte viability and chondrogenic gene expression and contained microRNAs implicated in chondrogenesis support. These EVs could therefore mediate the cross-talk between the SB and cartilage in OA potentially modulating chondrocyte viability and endogenous cartilage regeneration.

2016 ◽  
Vol 311 (5) ◽  
pp. F844-F851 ◽  
Author(s):  
Wei Zhang ◽  
Xiangjun Zhou ◽  
Hao Zhang ◽  
Qisheng Yao ◽  
Yutao Liu ◽  
...  

Extracellular vesicles (EV) are endogenously produced, membrane-bound vesicles that contain various molecules. Depending on their size and origins, EVs are classified into apoptotic bodies, microvesicles, and exosomes. A fundamental function of EVs is to mediate intercellular communication. In kidneys, recent research has begun to suggest a role of EVs, especially exosomes, in cell-cell communication by transferring proteins, mRNAs, and microRNAs to recipient cells as nanovectors. EVs may mediate the cross talk between various cell types within kidneys for the maintenance of tissue homeostasis. They may also mediate the cross talk between kidneys and other organs under physiological and pathological conditions. EVs have been implicated in the pathogenesis of both acute kidney injury and chronic kidney diseases, including renal fibrosis, end-stage renal disease, glomerular diseases, and diabetic nephropathy. The release of EVs with specific molecular contents into urine and plasma may be useful biomarkers for kidney disease. In addition, EVs produced by cultured cells may have therapeutic effects for these diseases. However, the role of EVs in kidney diseases is largely unclear, and the mechanism underlying EV production and secretion remains elusive. In this review, we introduce the basics of EVs and then analyze the present information about the involvement, diagnostic value, and therapeutic potential of EVs in major kidney diseases.


FEBS Journal ◽  
2018 ◽  
Vol 285 (12) ◽  
pp. 2337-2359 ◽  
Author(s):  
Arjen Gebraad ◽  
Roman Kornilov ◽  
Sippy Kaur ◽  
Susanna Miettinen ◽  
Suvi Haimi ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1336
Author(s):  
Noelia Muñoz-Domínguez ◽  
Santiago Roura ◽  
Cristina Prat-Vidal ◽  
Joaquim Vives

Outstanding progress has been achieved in developing therapeutic options for reasonably alleviating symptoms and prolonging the lifespan of patients suffering from myocardial infarction (MI). Current treatments, however, only partially address the functional recovery of post-infarcted myocardium, which is in fact the major goal for effective primary care. In this context, we largely investigated novel cell and TE tissue engineering therapeutic approaches for cardiac repair, particularly using multipotent mesenchymal stromal cells (MSC) and natural extracellular matrices, from pre-clinical studies to clinical application. A further step in this field is offered by MSC-derived extracellular vesicles (EV), which are naturally released nanosized lipid bilayer-delimited particles with a key role in cell-to-cell communication. Herein, in this review, we further describe and discuss the rationale, outcomes and challenges of our evidence-based therapy approaches using Wharton’s jelly MSC and derived EV in post-MI management.


2017 ◽  
Vol 373 (1737) ◽  
pp. 20160484 ◽  
Author(s):  
Junko H. Ohyashiki ◽  
Tomohiro Umezu ◽  
Kazuma Ohyashiki

Crosstalk between bone marrow tumour cells and surrounding cells, including bone marrow mesenchymal stromal cells (BM-MSCs), endothelial cells and immune cells, is important for tumour growth in haematological neoplasms. In addition to conventional signalling pathways, extracellular vesicles (EVs), which are endosome-derived vesicles containing proteins, mRNAs, lipids and miRNAs, can facilitate modulation of the bone marrow microenvironment without directly contacting non-tumourous cells. In this review, we discuss the current understanding of EV-mediated cell–cell communication in haematological neoplasms, particularly leukaemia and multiple myeloma. We highlight the actions of tumour and BM-MSC EVs in multiple myeloma. The origin of EVs, their tropism and mechanism of EV transfer are emerging issues that need to be addressed in EV-mediated cell–cell communication in haematological neoplasms. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Qi Wu ◽  
Hanpu Zhang ◽  
Si Sun ◽  
Lijun Wang ◽  
Shengrong Sun

AbstractTumor progression requires bidirectional cell-to-cell communication within a complex tumor microenvironment (TME). Extracellular vesicles (EVs) as carriers have the capacity to shuttle regulatory molecules, including nucleic acids, proteins, and lipids, between cancer cells and multiple stromal cells, inducing remarkable phenotypic alterations in the TME. Recently proposed the concept “immunogenic stress”, which means in some stressed microenvironment, cancer cells can release EVs containing specific immunoregulatory mediators, depending on the initiating stress-associated pathway, thereby provoking the changes of immune status in the TME. Considerable evidence has revealed that the intracellular mechanisms underlying the response to diverse stresses are mainly autophagy, endoplasmic reticulum (ER) stress reactions and the DNA damage response (DDR). In addition, the activation of immunogenic stress responses endows hosts with immune surveillance capacity; in contrast, several cargoes in EVs under immunogenic stress trigger a passive immune response by mediating the function of immune cells. This review discusses the current understanding of the immunogenic stress pathways in cancer and describes the interrelation between EVs and immunogenic stress to propose potential treatment strategies and biomarkers.


2017 ◽  
Vol 95 (6) ◽  
pp. 593-608 ◽  
Author(s):  
Juan Ausió ◽  
Philippe T. Georgel

This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1193-1193
Author(s):  
Gregoire Stik ◽  
Simon Crequit ◽  
Jennifer Durant ◽  
Laurence Petit ◽  
Pierre Charbord ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are identified by their ability to self-renew and to differentiate into all blood cell lineages. In vivo, hematopoietic stem/progenitor cells (HSPCs) are in close association with stromal cells that constitute a supportive microenvironment also called niche. Recently, exosomes that are small microvesicles enclosed by a lipid bilayer and enriched in cytoplasmic proteins, mRNAs, microRNAs, have emerged as major communication mediators between cells. However, their implication in the cross-talk between HSCs and stromal cells is still largely unknown. This study aims to assess the existence and the functionality of stromal cell-derived exosomes in the HSPC support. To address this issue, we used two murine stromal cell lines derived from the fetal liver and with differing capacity to maintain HSPCs ex vivo as revealed by repopulation assay and long-term cultures. AFT024 (AFT) harbors a potent HSPC supporting capacity in vitro whereas BFC012 (BFC) is non supportive. For each cell line, the exosome fractions were isolated from culture supernatant by ultra-centrifugation. Electron microscopy, western blot, and flow cytometry analyses revealed that both AFT and BFC stromal cells secrete exosomes. Interestingly, using PKH67 stained exosomes, we demonstrated that bone marrow Lin-Sca-1+c-kit+ (LSK) cells preferentially uptake AFT-derived exosomes. This observation might be related to the different tetraspanin compositions of AFT and BFC derived exosomes as observed by flow cytometry. We then showed an increase in cell viability and clonogenic potential when LSK cells were exposed to AFT-derived exosomes for 96 hours in cytokine-free medium as compared to controls. Moreover, cultures with AFT-derived exosomes exhibited a 3.5 fold increase in the number of LSK cells as compared to untreated conditions. We then used high-throughput sequencing to explore the molecular signatures of AFT and BFC derived exosomes, as well as their cells of origin. We identified a list of 394 mRNAs and 6 microRNAs specifically expressed in exosomes and correlated to the HSPC support. Gene ontology analysis revealed that the apoptotic regulation, cell survival and proliferation pathways were significantly enriched in the AFT-derived exosomal signature. In addition, we showed the transfer of mRNAs involved in these pathways from the AFT-exosomes to the LSK recipient cells. Together with our observation of a decrease in the LSK apoptotic cells after co-culture with AFT-derived exosomes, these data suggest that exosomes released by AFT cells may protect HSPCs from apoptosis. Collectively, our results revealed an important role for exosomes in the HSPC supporting capacity of stromal cells. This work provides new insights in our understanding of the molecular and cellular mechanisms involved in the cross-talk between HSPCs and their niches. It may also have interesting applications in regenerative medicine, regarding the ex vivo manipulation of HSCs in stromal-free conditions for cell therapy. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document