scholarly journals Session Recommendation Model Based on Context-Aware and Gated Graph Neural Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dan Li ◽  
Qian Gao

The graph neural network (GNN) based approach has been successfully applied to session-based recommendation tasks. However, in the face of complex and changing real-world situations, the existing session recommendation algorithms do not fully consider the context information in user decision-making; furthermore, the importance of context information for the behavior model has been widely recognized. Based on this, this paper presents a session recommendation model based on context-aware and gated graph neural networks (CA-GGNNs). First, this paper presents the session sequence as data of graph structure. Second, the embedding vector representation of each item in the session graph is obtained by using the gated graph neural network (GGNN). In this paper, the GRU in GGNN is expanded to replace the input matrix and the state matrix in the conventional GRU with input context captured in the session (e.g., time, location, and holiday) and interval context (representing the proportion of the total session time of each item in the session). Finally, a soft attention mechanism is used to capture users’ interests and preferences, and a recommendation list is given. The CA-GGNN model combines session sequence information with context information at each time. The results on the open Yoochoose and Diginetica datasets show that the model has significantly improved compared with the latest session recommendation methods.

2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 182
Author(s):  
Rodrigo Dalvit Carvalho da Silva ◽  
Thomas Richard Jenkyn ◽  
Victor Alexander Carranza

In reconstructive craniofacial surgery, the bilateral symmetry of the midplane of the facial skeleton plays an important role in surgical planning. Surgeons can take advantage of the intact side of the face as a template for the malformed side by accurately locating the midplane to assist in the preparation of the surgical procedure. However, despite its importance, the location of the midline is still a subjective procedure. The aim of this study was to present a 3D technique using a convolutional neural network and geometric moments to automatically calculate the craniofacial midline symmetry of the facial skeleton from CT scans. To perform this task, a total of 195 skull images were assessed to validate the proposed technique. In the symmetry planes, the technique was found to be reliable and provided good accuracy. However, further investigations to improve the results of asymmetric images may be carried out.


2020 ◽  
Author(s):  
Douglas Meneghetti ◽  
Reinaldo Bianchi

This work proposes a neural network architecture that learns policies for multiple agent classes in a heterogeneous multi-agent reinforcement setting. The proposed network uses directed labeled graph representations for states, encodes feature vectors of different sizes for different entity classes, uses relational graph convolution layers to model different communication channels between entity types and learns distinct policies for different agent classes, sharing parameters wherever possible. Results have shown that specializing the communication channels between entity classes is a promising step to achieve higher performance in environments composed of heterogeneous entities.


2020 ◽  
Vol 34 (04) ◽  
pp. 3898-3905 ◽  
Author(s):  
Claudio Gallicchio ◽  
Alessio Micheli

We address the efficiency issue for the construction of a deep graph neural network (GNN). The approach exploits the idea of representing each input graph as a fixed point of a dynamical system (implemented through a recurrent neural network), and leverages a deep architectural organization of the recurrent units. Efficiency is gained by many aspects, including the use of small and very sparse networks, where the weights of the recurrent units are left untrained under the stability condition introduced in this work. This can be viewed as a way to study the intrinsic power of the architecture of a deep GNN, and also to provide insights for the set-up of more complex fully-trained models. Through experimental results, we show that even without training of the recurrent connections, the architecture of small deep GNN is surprisingly able to achieve or improve the state-of-the-art performance on a significant set of tasks in the field of graphs classification.


Author(s):  
Senthil Kumar Arumugasamy ◽  
Zainal Ahmad

Process control in the field of chemical engineering has always been a challenging task for the chemical engineers. Hence, the majority of processes found in the chemical industries are non-linear and in these cases the performance of the linear models can be inadequate. Recently a promising alternative modelling technique, artificial neural networks (ANNs), has found numerous applications in representing non-linear functional relationships between variables. A feedforward multi-layered neural network is a highly connected set of elementary non-linear neurons. Model-based control techniques were developed to obtain tighter control. Many model-based control schemes have been proposed to incorporate a process model into a control system. Among them, model predictive control (MPC) is the most common scheme. MPC is a general and mathematically feasible scheme to integrate our knowledge about a target, process controller design and operation, which allows flexible and efficient exploitation of our understanding of a target, and thus produces optimal performance of a system under various constraints. The need to handle some difficult control problems has led us to use ANN in MPC and has recently attracted a great deal of attention. The efficacy of the neural predictive control with the ability to perform comparably to the non linear neural network strategy in both set point tracking and disturbance rejection proves to have less computation expense for the neural predictive control. The neural network model predictive control (NNMPC) method has less perturbations and oscillations when dealing with noise as compared to the PI controllers.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Zhisheng Zhang ◽  
Wenjie Gong

Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means ofK-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-8
Author(s):  
Martin Happ ◽  
Matthias Herlich ◽  
Christian Maier ◽  
Jia Lei Du ◽  
Peter Dorfinger

Modeling communication networks to predict performance such as delay and jitter is important for evaluating and optimizing them. In recent years, neural networks have been used to do this, which may have advantages over existing models, for example from queueing theory. One of these neural networks is RouteNet, which is based on graph neural networks. However, it is based on simplified assumptions. One key simplification is the restriction to a single scheduling policy, which describes how packets of different flows are prioritized for transmission. In this paper we propose a solution that supports multiple scheduling policies (Strict Priority, Deficit Round Robin, Weighted Fair Queueing) and can handle mixed scheduling policies in a single communication network. Our solution is based on the RouteNet architecture as part of the "Graph Neural Network Challenge". We achieved a mean absolute percentage error under 1% with our extended model on the evaluation data set from the challenge. This takes neural-network-based delay estimation one step closer to practical use.


2020 ◽  
Author(s):  
Janosch Menke ◽  
Oliver Koch

Molecular fingerprints are essential for different cheminformatics approaches like similarity-based virtual screening. In this work, the concept of neural (network) fingerprints in the context of similarity search is introduced in which the activation of the last hidden layer of a trained neural network represents the molecular fingerprint. The neural fingerprint performance of five different neural network architectures was analyzed and compared to the well-established Extended Connectivity Fingerprint (ECFP) and an autoencoder-based fingerprint. This is done using a published compound dataset with known bioactivity on 160 different kinase targets. We expect neural networks to combine information about the molecular space of<br>already known bioactive compounds together with the information on the molecular structure of the query and by doing so enrich the fingerprint. The results show that indeed neural fingerprints can greatly improve the performance of similarity searches. Most importantly, it could be shown that the neural fingerprint performs well even for kinase targets that were not included in the training. Surprisingly, while Graph Neural Networks (GNNs) are thought to offer an advantageous alternative, the best performing neural fingerprints were based on traditional fully connected layers using the ECFP4 as input. The best performing kinase-specific neural fingerprint will be provided for public use.


2020 ◽  
Vol 4 (4(73)) ◽  
pp. 15-24
Author(s):  
S.N. Boranbayev ◽  
M.S. Amirtayev

The purpose of this article is to summarize the knowledge gained in the development and implementation of a neural network for facial recognition. Neural networks are used to solve complex tasks that require analytical calculations similar to what the human brain does. Machine learning algorithms are the foundation of a neural network. As input, the algorithm receives an image with people's faces, then searches for faces in this image using HOG (Histogram of oriented gradients). The result is images with explicit face structures. To determine unique facial features, the Face landmark algorithm is used, which finds 68 special points on the face. These points can be used to centerthe eyes and mouth for more accurate encoding. To get an accurate “face map” consisting of 128 dimensions, you need to use image encoding. Using the obtained data, the convolutional neural network can determine people's faces using the SVM linear classifier algorithm.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 402
Author(s):  
Y Yusmartato ◽  
Zulkarnain Lubis ◽  
Solly Arza ◽  
Zulfadli Pelawi ◽  
A Armansah ◽  
...  

Lockers are one of the facilities that people use to store stuff. Artificial neural networks are computational systems where architecture and operations are inspired by the knowledge of biological neurons in the brain, which is one of the artificial representations of the human brain that always tries to stimulate the learning process of the human brain. One of the utilization of artificial neural network is for pattern recognition. The face of a person must be different but sometimes has a shape similar to the face of others, because the facial pattern is a good pattern to try to be recognized by using artificial neural networks. Pattern recognition on artificial neural network can be done by back propagation method. Back propagation method consists of input layer, hidden layer and output layer.  


Sign in / Sign up

Export Citation Format

Share Document