scholarly journals Combustion Turbulence Flow in the Advanced Vortex Combustor with Built-In Obstacles

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yu Chen ◽  
Zhuoxiong Zeng ◽  
Haoyuan Wang

To obtain the advanced vortex combustor (AVC) and its optimal structure parameters in light of built-in obstacles, numerical simulation was performed. This research shows that inclined struts have optimal structural parameters with inclination angle α = 30 ° and blocking ratio BR = 12 %, while guide vane and its optimal structural parameter have three layers, which are a / B = 0.1 , b / h = 0.4 , and c / L = 0.2 , respectively; blunt body has the biggest height of H 1 / B 1 = 2 / 3 . According to these statistics, the research studies how inlet factors affect turbulence flow in combustion. The research finds increases in inlet velocity and flow resistance are in positive correlation. As inlet temperature increases, the flow resistance decreases. From field synergy theory, inlet factor has different effect on the heat transfer performance.

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Zhuoxiong Zeng ◽  
Kaifang Guo ◽  
Xue Gong

Numerical calculation was conducted to obtain the optimum structure parameters of the trapped vortex combustor (TVC) with the guide vane and blunt body. The results show that the optimum structure parameters of the guide vane are a/Hf=0.5, b/Li=0.2, and c/L=0.1, and the optimum structure parameters of blunt body are S/L=0.7, L2/L=0.1, and L1/Li=0.25. Then, the influence of different inlet conditions on the combustion turbulence flow was studied. The results show that high inlet temperature and low inlet velocity can effectively reduce total pressure loss; the equivalence ratio has little effect on total pressure loss. The study of unsteady flow shows that double vortices undergo the process of preliminarily forming-breaking down-forming again-being stable gradually.


Author(s):  
Peiyong Ma ◽  
Baogang Wang ◽  
Shuilin Chen ◽  
Xianwen Zhang ◽  
Changfa Tao ◽  
...  

The gradient porous materials (GPMs)-filled pipe structure has been proved to be effective in improving the heat transfer ability and reducing pressure drop of fluid. A GPMs-filled pipe structure in which radial pore-size gradient increased nonlinearly has been proposed. The field synergy theory and tradeoff analysis on the efficiency of integrated heat transfer has been accomplished based on performance evaluation criteria (PEC). It was found that the ability of heat transfer was enhanced considerably, based on the pipe structure, in which the pore-size of porous materials increased as a parabolic opening up. The flow resistance was the lowest and the integrated heat transfer performance was the highest when radial pore-size gradient increasing as a parabolic opening down.


2021 ◽  
Author(s):  
Ping Huang ◽  
Wei Huang ◽  
Xiajun Lin ◽  
Chi-Min Shu

Abstract To optimize the heat transfer performance of heat exchangers, this study explored the flow properties and heat transfer of cosine-wave-shaped runners with different structural parameters (wave amplitude, focal distance, and circle radius). The effects of the changes in these structural parameters on the flow and temperature fields of specially shaped channels were analyzed. The partial synergy angles of cosine runners were obtained using user-defined programs in CFD software. The synergy of the entire channel was evaluated using the average field synergy angle as an evaluation index. This study investigated the problem of distribution nonuniformity of the temperature differences during the medium flowing process to provide a theoretical foundation and guidelines for optimally designing the structural parameters of specially shaped channels.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 63
Author(s):  
Sondre Norheim ◽  
Shokri Amzin

Gas turbine performance is closely linked to the turbine inlet temperature, which is limited by the turbine guide vanes ability to withstand the massive thermal loads. Thus, steam cooling has been introduced as an advanced cooling technology to improve the efficiency of modern high-temperature gas turbines. This study compares the cooling performance of compressed air and steam in the renowned radially cooled NASA C3X turbine guide vane, using a numerical model. The conjugate heat transfer (CHT) model is based on the RANS-method, where the shear stress transport (SST) k−ω model is selected to predict the effects of turbulence. The numerical model is validated against experimental pressure and temperature distributions at the external surface of the vane. The results are in good agreement with the experimental data, with an average error of 1.39% and 3.78%, respectively. By comparing the two coolants, steam is confirmed as the superior cooling medium. The disparity between the coolants increases along the axial direction of the vane, and the total volume average temperature difference is 30 K. Further investigations are recommended to deal with the local hot-spots located near the leading- and trailing edge of the vane.


2004 ◽  
Vol 10 (5) ◽  
pp. 345-354 ◽  
Author(s):  
Jan Dittmar ◽  
Achmed Schulz ◽  
Sigmar Wittig

The demand of improved thermal efficiency and high power output of modern gas turbine engines leads to extremely high turbine inlet temperature and pressure ratios. Sophisticated cooling schemes including film cooling are widely used to protect the vanes and blades of the first stages from failure and to achieve high component lifetimes. In film cooling applications, injection from discrete holes is commonly used to generate a coolant film on the blade's surface.In the present experimental study, the film cooling performance in terms of the adiabatic film cooling effectiveness and the heat transfer coefficient of two different injection configurations are investigated. Measurements have been made using a single row of fanshaped holes and a double row of cylindrical holes in staggered arrangement. A scaled test model was designed in order to simulate a realistic distribution of Reynolds number and acceleration parameter along the pressure side surface of an actual turbine guide vane. An infrared thermography measurement system is used to determine highly resolved distribution of the models surface temperature. Anin-situcalibration procedure is applied using single embedded thermocouples inside the measuring plate in order to acquire accurate local temperature data.All holes are inclined 35° with respect to the model's surface and are oriented in a streamwise direction with no compound angle applied. During the measurements, the influence of blowing ratio and mainstream turbulence level on the adiabatic film cooling effectiveness and heat transfer coefficient is investigated for both of the injection configurations.


2015 ◽  
Vol 19 (6) ◽  
pp. 2039-2048 ◽  
Author(s):  
Hafiz Ali ◽  
Muhammad Azhar ◽  
Musab Saleem ◽  
Qazi Saeed ◽  
Ahmed Saieed

The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12%) were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % volumetric concentration of MgO in basefluid. The fluid flow rate was kept in a range of 8-16 liter per minute. Lower flow rates resulted in greater heat transfer rates as compared to heat transfer rates at higher flow rates for the same volumetric concentration. Heat transfer rates were found weakly dependent on the inlet fluid temperature. An increase of 8?C in inlet temperature showed only a 6% increase in heat transfer rate.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879559 ◽  
Author(s):  
Min Xiang ◽  
Feng Xiong ◽  
Yuanfeng Shi ◽  
Kaoshan Dai ◽  
Zhibin Ding

Engineering structures usually exhibit time-varying behavior when subjected to strong excitation or due to material deterioration. This behavior is one of the key properties affecting the structural performance. Hence, reasonable description and timely tracking of time-varying characteristics of engineering structures are necessary for their safety assessment and life-cycle management. Due to its powerful ability of approximating functions in the time–frequency domain, wavelet multi-resolution approximation has been widely applied in the field of parameter estimation. Considering that the damage levels of beams and columns are usually different, identification of time-varying structural parameters of frame structure under seismic excitation using wavelet multi-resolution approximation is studied in this article. A time-varying dynamical model including both the translational and rotational degrees of freedom is established so as to estimate the stiffness coefficients of beams and columns separately. By decomposing each time-varying structural parameter using one wavelet multi-resolution approximation, the time-varying parametric identification problem is transformed into a time-invariant non-parametric one. In solving the high number of regressors in the non-parametric regression program, the modified orthogonal forward regression algorithm is proposed for significant term selection and parameter estimation. This work is demonstrated through numerical examples which consider both gradual variation and abrupt changes in the structural parameters.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Ningbo Zhao ◽  
Xueyou Wen ◽  
Shuying Li

Coolant is one of the important factors affecting the overall performance of the intercooler for the intercooled (IC) cycle marine gas turbine. Conventional coolants, such as water and ethylene glycol, have lower thermal conductivity which can hinder the development of highly effective compact intercooler. Nanofluids that consist of nanoparticles and base fluids have superior properties like extensively higher thermal conductivity and heat transfer performance compared to those of base fluids. This paper focuses on the application of two different water-based nanofluids containing aluminum oxide (Al2O3) and copper (Cu) nanoparticles in IC cycle marine gas turbine intercooler. The effectiveness-number of transfer unit method is used to evaluate the flow and heat transfer performance of intercooler, and the thermophysical properties of nanofluids are obtained from literature. Then, the effects of some important parameters, such as nanoparticle volume concentration, coolant Reynolds number, coolant inlet temperature, and gas side operating parameters on the flow and heat transfer performance of intercooler, are discussed in detail. The results demonstrate that nanofluids have excellent heat transfer performance and need lower pumping power in comparison with base fluids under different gas turbine operating conditions. Under the same heat transfer, Cu–water nanofluids can reduce more pumping power than Al2O3–water nanofluids. It is also concluded that the overall performance of intercooler can be enhanced when increasing the nanoparticle volume concentration and coolant Reynolds number and decreasing the coolant inlet temperature.


Author(s):  
Nan Zhang ◽  
Yanchen Fu ◽  
Haoran Huang ◽  
Jie Wen ◽  
Nigeer Te

The flow resistance characteristics of aviation kerosene RP-3 in horizontal helical tubes at the supercritical pressure under heating condition are investigated. Both pressure drop and friction factor were examined under uniform heat flux of 50kW/m2−300kW/m2, mass flux from 786kg/m2s to 1375kg/m2s, and helical diameter from 20mm to 40mm. The influence of viscous factors on the resistance is analyzed to explore flow characteristics in a helical tube and provide a reference for the design of heat exchangers. Friction factor decreases with the increase of heat flux at low inlet temperatures 323K and 423K. It is explained that the viscosity changes more dramatically than the density. When the fluid inlet temperature is 523K and the fluid mean temperature Tb is close to pseudo-critical temperature, frictional flow resistance becomes significantly larger Tpc due to huge variations in thermal properties in the radical direction. The effect of centrifugal force makes the friction factor decline slowly. The friction factor goes up with the enlargement of mass flux when Tb>0.81Tpc. This phenomenon is caused by the larger radial velocity gradient under the large mass flux. Different helical diameters play the leading roles for the bending flow in the tubes.


Sign in / Sign up

Export Citation Format

Share Document