scholarly journals Stroke Disease Detection and Prediction Using Robust Learning Approaches

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tahia Tazin ◽  
Md Nur Alam ◽  
Nahian Nakiba Dola ◽  
Mohammad Sajibul Bari ◽  
Sami Bourouis ◽  
...  

Stroke is a medical disorder in which the blood arteries in the brain are ruptured, causing damage to the brain. When the supply of blood and other nutrients to the brain is interrupted, symptoms might develop. According to the World Health Organization (WHO), stroke is the greatest cause of death and disability globally. Early recognition of the various warning signs of a stroke can help reduce the severity of the stroke. Different machine learning (ML) models have been developed to predict the likelihood of a stroke occurring in the brain. This research uses a range of physiological parameters and machine learning algorithms, such as Logistic Regression (LR), Decision Tree (DT) Classification, Random Forest (RF) Classification, and Voting Classifier, to train four different models for reliable prediction. Random Forest was the best performing algorithm for this task with an accuracy of approximately 96 percent. The dataset used in the development of the method was the open-access Stroke Prediction dataset. The accuracy percentage of the models used in this investigation is significantly higher than that of previous studies, indicating that the models used in this investigation are more reliable. Numerous model comparisons have established their robustness, and the scheme can be deduced from the study analysis.

2022 ◽  
pp. 383-393
Author(s):  
Lokesh M. Giripunje ◽  
Tejas Prashant Sonar ◽  
Rohit Shivaji Mali ◽  
Jayant C. Modhave ◽  
Mahesh B. Gaikwad

Risk because of heart disease is increasing throughout the world. According to the World Health Organization report, the number of deaths because of heart disease is drastically increasing as compared to other diseases. Multiple factors are responsible for causing heart-related issues. Many approaches were suggested for prediction of heart disease, but none of them were satisfactory in clinical terms. Heart disease therapies and operations available are so costly, and following treatment, heart disease is also costly. This chapter provides a comprehensive survey of existing machine learning algorithms and presents comparison in terms of accuracy, and the authors have found that the random forest classifier is the most accurate model; hence, they are using random forest for further processes. Deployment of machine learning model using web application was done with the help of flask, HTML, GitHub, and Heroku servers. Webpages take input attributes from the users and gives the output regarding the patient heart condition with accuracy of having coronary heart disease in the next 10 years.


2021 ◽  
Author(s):  
Meng Ji ◽  
Pierrette Bouillon

BACKGROUND Linguistic accessibility has important impact on the reception and utilization of translated health resources among multicultural and multilingual populations. Linguistic understandability of health translation has been under-studied. OBJECTIVE Our study aimed to develop novel machine learning models for the study of the linguistic accessibility of health translations comparing Chinese translations of the World Health Organization health materials with original Chinese health resources developed by the Chinese health authorities. METHODS Using natural language processing tools for the assessment of the readability of Chinese materials, we explored and compared the readability of Chinese health translations from the World Health Organization with original Chinese materials from China Centre for Disease Control and Prevention. RESULTS Pairwise adjusted t test showed that three new machine learning models achieved statistically significant improvement over the baseline logistic regression in terms of AUC: C5.0 decision tree (p=0.000, 95% CI: -0.249, -0.152), random forest (p=0.000, 95% CI: 0.139, 0.239) and XGBoost Tree (p=0.000, 95% CI: 0.099, 0.193). There was however no significant difference between C5.0 decision tree and random forest (p=0.513). Extreme gradient boost tree was the best model having achieved statistically significant improvement over the C5.0 model (p=0.003) and the Random Forest model (p=0.006) at the adjusted Bonferroni p value at 0.008. CONCLUSIONS The development of machine learning algorithms significantly improved the accuracy and reliability of current approaches to the evaluation of the linguistic accessibility of Chinese health information, especially Chinese health translations in relation to original health resources. Although the new algorithms developed were based on Chinese health resources, they can be adapted for other languages to advance current research in accessible health translation, communication, and promotion.


Author(s):  
A Lakshmanarao ◽  
M Raja Babu ◽  
T Srinivasa Ravi Kiran

<p>The whole world is experiencing a novel infection called Coronavirus brought about by a Covid since 2019. The main concern about this disease is the absence of proficient authentic medicine The World Health Organization (WHO) proposed a few precautionary measures to manage the spread of illness and to lessen the defilement in this manner decreasing cases. In this paper, we analyzed the Coronavirus dataset accessible in Kaggle. The past contributions from a few researchers of comparative work covered a limited number of days. Our paper used the covid19 data till May 2021. The number of confirmed cases, recovered cases, and death cases are considered for analysis. The corona cases are analyzed in a daily, weekly manner to get insight into the dataset. After extensive analysis, we proposed machine learning regressors for covid 19 predictions. We applied linear regression, polynomial regression, Decision Tree Regressor, Random Forest Regressor. Decision Tree and Random Forest given an r-square value of 0.99. We also predicted future cases with these four algorithms. We can able to predict future cases better with the polynomial regression technique. This prediction can help to take preventive measures to control covid19 in near future. All the experiments are conducted with python language</p>


Author(s):  
Lokesh Kola

Abstract: Diabetes is the deadliest chronic diseases in the world. According to World Health Organization (WHO) around 422 million people are currently suffering from diabetes, particularly in low and middle-income countries. Also, the number of deaths due to diabetes is close to 1.6 million. Recent research has proven that the occurrence of diabetes is likely to be seen in people aged between 18 and this has risen from 4.7 to 8.5% from 1980 to 2014. Early diagnosis is necessary so that the disease does not go into advanced stages which is quite difficult to cure. Significant research has been performed in diabetes predictions. As time passes, challenges keep increasing to build a system to detect diabetes systematically. The hype for Machine Learning is increasing day to day to analyse medical data to diagnose a disease. Previous research has focused on just identifying the diabetes without specifying its type. In this paper, we have we have predicted gestational diabetes (Type-3) by comparing various supervised and semi-supervised machine learning algorithms on two datasets i.e., binned and non-binned datasets and compared the performance based on evaluation metrics. Keywords: Gestational diabetes, Machine Learning, Supervised Learning, Semi-Supervised Learning, Diabetes Prediction


2021 ◽  
Author(s):  
Naser Zaeri

The coronavirus disease 2019 (COVID-19) outbreak has been designated as a worldwide pandemic by World Health Organization (WHO) and raised an international call for global health emergency. In this regard, recent advancements of technologies in the field of artificial intelligence and machine learning provide opportunities for researchers and scientists to step in this battlefield and convert the related data into a meaningful knowledge through computational-based models, for the task of containment the virus, diagnosis and providing treatment. In this study, we will provide recent developments and practical implementations of artificial intelligence modeling and machine learning algorithms proposed by researchers and practitioners during the pandemic period which suggest serious potential in compliant solutions for investigating diagnosis and decision making using computerized tomography (CT) scan imaging. We will review the modern algorithms in CT scan imaging modeling that may be used for detection, quantification, and tracking of Coronavirus and study how they can differentiate Coronavirus patients from those who do not have the disease.


The novel coronavirus (COVID-19) was declared as the 2019-20 coronavirus pandemic by the World Health Organization (WHO) in March 2020. The COVID-19 virus has rapidly spread nationwide and internationally and caused 188 countries to report more than ten million cases of individuals contracting COVID-19. Typically, the virus is conveyed from person to person via respiratory droplets produced by coughing and sneezing. The time period between exposure and onset of symptoms is typically between two and fourteen days, and on average five days. The COVID-19 pandemic has affected many businesses relating to transportation including tourism, import-export commerce, the aviation business, and so forth. Governmental intervention in each country has had an impact on mobility trends depending on the degree of restriction such as social distancing, sharing mobility, and public transport. A COVID-19 surveillance system is one of the principal methods used for detecting COVID-19 epidemics, using short-period monitoring. However, while these networks present information on the activities of COVID-19, acquiring completed surveillance data from every medical station is profusely difficult due to many factors. This research aims to propose a performance model of machine learning approaches for COVID-19 pandemic forecasting of mobility trends in each country in Southeast Asia. Spatial data and non-spatial data are used to build the machine learning models. The experiments conducted showed that the model gave a forecasting accuracy in walking and driving mobility of 94.40% and 92.00%, respectively. The proposed forecasting model was developed to be of benefits to health authorities in the planning and administration of a suitable strategy to make decisions concerning transportation planning in each country.


2020 ◽  
pp. 1-24
Author(s):  
TINGBIN BIAN ◽  
JIN CHEN ◽  
QU FENG ◽  
JINGYI LI

We aim to compare econometric analyses with machine learning approaches in the context of Singapore private property market using transaction data covering the period of 1995–2018. A hedonic model is employed to quantify the premiums of important attributes and amenities, with a focus on the premium of distance to nearest Mass Rapid Transit (MRT) stations. In the meantime, an investigation using machine learning algorithms under three categories — LASSO, random forest and artificial neural networks is conducted in the same context with deeper insights on importance of determinants of property prices. The results suggest that the MRT distance premium is significant and moving 100[Formula: see text]m closer from the mean distance point to the nearest MRT station would increase the overall transacted price by about 15,000 Singapore dollars (SGD). Machine learning approaches generally achieve higher prediction accuracy and heterogeneous property age premium is suggested by LASSO. Using random forest algorithm, we find that property prices are mostly affected by key macroeconomic factors, such as the time of sale, as well as the size and floor level of property. Finally, an appraisal on different approaches is provided for researchers to utilize additional data sources and data-driven approaches to exploit potential causal effects in economic studies.


2021 ◽  
Author(s):  
Martin Seeliger ◽  
Marina Altmeyer ◽  
Andreas Ginau ◽  
Robert Schiestl ◽  
Jürgen Wunderlich

&lt;p&gt;This paper presents the application of machine-learning techniques on pXRF data to establish a chronology for sediment cores around Tell Buto (Tell el-Fara&amp;#180;in) in the northwestern Nile Delta. As modern laboratories for dating techniques like OSL or &lt;sup&gt;14&lt;/sup&gt;C are rare in Egypt and sample export is restricted, we are facing a lack of opportunities to create a robust chronology, which is indispensable in modern Geoarchaeology.&lt;/p&gt;&lt;p&gt;Therefore, we present a new approach to transfer archaeological age information gained at the excavation at Buto to corings of the wider Buto area. Sediments of archaeological outcrops and pits with known age are measured using pXRF to create a geochemical &amp;#8220;fingerprint&amp;#8221; for several historic eras. Afterwards, these &amp;#8220;fingerprints&amp;#8221; are transferred to corings of the surrounding areas using machine-learning algorithms.&lt;/p&gt;&lt;p&gt;This paper presents 1) the application of three different machine-learning approaches (Neuronal Net, Random Forest, and C5.0 decision tree) to check if archaeological age information can be transferred to sediments far off the settlement mounds using pXRF data, 2) the comparison of all approaches and the evaluation if the easily anticipated decision tree and Random Forest show similar results as the &amp;#8220;black-box system&amp;#8221; Neuronal Net, and finally, 3) a case study that provides the results of Altmeyer et al. (in review) for Kom el-Gir, a further settlement mound little north of Buto, with a chronostratigraphic framework based on this approach.&lt;/p&gt;&lt;p&gt;Reference:&lt;/p&gt;&lt;p&gt;Altmeyer, M., Seeliger, M., Ginau, A., Schiestl, R. &amp; J. Wunderlich (in review):&amp;#160; Reconstruction of former channel systems in the northwestern Nile Delta (Egypt) based on corings and electrical resistivity tomography (ERT). (Submitted to E &amp; G Quaternary Science Journal).&lt;/p&gt;


2020 ◽  
Author(s):  
Rui Yin ◽  
Zihan Luo ◽  
Chee Keong Kwoh

AbstractA newly emerging novel coronavirus appeared and rapidly spread worldwide and World Health Organization declared a pandemic on March 11, 2020. The roles and characteristics of coronavirus have captured much attention due to its power of causing a wide variety of infectious diseases, from mild to severe on humans. The detection of the lethality of human coronavirus is key to estimate the viral toxicity and provide perspective for treatment. We developed alignment-free machine learning approaches for an ultra-fast and highly accurate prediction of the lethality of potential human-adapted coronavirus using genomic nucleotide. We performed extensive experiments through six different feature transformation and machine learning algorithms in combination with digital signal processing to infer the lethality of possible future novel coronaviruses using previous existing strains. The results tested on SARS-CoV, MERS-Cov and SARS-CoV-2 datasets show an average 96.7% prediction accuracy. We also provide preliminary analysis validating the effectiveness of our models through other human coronaviruses. Our study achieves high levels of prediction performance based on raw RNA sequences alone without genome annotations and specialized biological knowledge. The results demonstrate that, for any novel human coronavirus strains, this alignment-free machine learning-based approach can offer a reliable real-time estimation for its viral lethality.


2021 ◽  
Author(s):  
Christine Ji

BACKGROUND Linguistic accessibility has important impact on the reception and utilisation of translated health resources among multicultural and multilingual populations. Linguistic understandability of health translation has been under-studied. OBJECTIVE Our study aimed to develop novel machine learning models for the study of the linguistic accessibility of health translations comparing Chinese translations of the World Health Organisation health materials with original Chinese health resources developed by the Chinese health authorities. METHODS Using natural language processing tools for the assessment of the readability of Chinese materials, we explored and compared the readability of Chinese health translations from the World Health Organisation with original Chinese materials from China Centre for Disease Control and Prevention. RESULTS Pairwise adjusted t test showed that three new machine learning models achieved statistically significant improvement over the baseline logistic regression in terms of AUC: C5.0 decision tree (p=0.000, 95% CI: -0.249, -0.152), random forest (p=0.000, 95% CI: 0.139, 0.239) and XGBoost Tree (p=0.000, 95% CI: 0.099, 0.193). There was however no significant difference between C5.0 decision tree and random forest (p=0.513). Extreme gradient boost tree was the best model having achieved statistically significant improvement over the C5.0 model (p=0.003) and the Random Forest model (p=0.006) at the adjusted Bonferroni p value at 0.008. CONCLUSIONS The development of machine learning algorithms significantly improved the accuracy and reliability of current approaches to the evaluation of the linguistic accessibility of Chinese health information, especially Chinese health translations in relation to original health resources. Although the new algorithms developed were based on Chinese health resources, they can be adapted for other languages to advance current research in accessible health translation, communication, and promotion.


Sign in / Sign up

Export Citation Format

Share Document