scholarly journals Anionic Dye Removal by Polypyrrole-Modified Red Mud and Its Application to a Lab-Scale Column: Adsorption Performance and Phytotoxicity Assessment

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Feng Zhang ◽  
Yue Yin ◽  
Chunlei Qiao ◽  
Ya-nan Luan ◽  
Mengyan Guo ◽  
...  

In this study, polypyrrole-modified red mud (PRM) was prepared for the efficient removal of anionic dyes (methyl orange and Congo red) from aqueous solutions. The phytotoxicity (bean sprouts) of the dye solution before and after dye removal was investigated. Adsorption kinetics confirmed that the adsorption of methyl orange (MO) and Congo red (CR) on PRM was controlled by chemical reactions between the functional groups of polypyrrole and dyes. From Langmuir isotherm fitting, we found the theoretical adsorption capacities of MO and CR on PRM were 194.1 and 314.9 mg/g, respectively. The adsorption progress of MO and CR on PRM was found to be spontaneous and endothermic. The column studies demonstrated that, under dynamic flow, the PRM can efficiently remove MO and CR from aqueous solution, with adsorption capacities of 31.08 and 55.04 mg/g, respectively. In the toxicity test, the phytotoxicity of the column effluents (after dye removal) was significantly lowered compared to the initial dye influents. After the removal of MO and CR, the average root length of bean sprouts was increased from 3.30 cm to 5.18 cm and from 3.01 cm to 7.00 cm, respectively. These findings highlighted the efficient removal of dyes by PRM from aqueous solution, demonstrating the possible application of PRM for the removal of dye from dye-contaminated wastewaters.

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 244-256
Author(s):  
Guobin Xu ◽  
Yuejun Zhu ◽  
Xiujun Wang ◽  
Shanshan Wang ◽  
Tianxiang Cheng ◽  
...  

AbstractA series of chitosan and Laponite based nano-composite adsorbents, which showed an excellent performance for fast and efficient removal of Cd(II), methylene blue (MB) and Congo red (CR) from aqueous solution, were prepared. In the adsorbent, with the increase of Laponite component, the surface area increased from 44.69 m2 g-1 to 64.58 m2 g-1. As a result, the adsorption rates were enhanced by increasing Laponite component. The adsorption capacities for Cd(II) and MB increased with increasing Laponite component due the cationic characteristic of two pollutants, and the opposite result was found for the removal of CR. The impacts of some factors, e.g. solution pH, temperature, pollutant concentration and salt, on the adsorption capacity were investigated. Additionally, this adsorbent could be effectively regenerated by dilute HCl solution after the adsorption of Cd(II), and the mixture of methanol and acetic acid was a suitable eluent after the adsorption of two dyes.


2021 ◽  
Vol 765 (1) ◽  
pp. 012089
Author(s):  
R Taufik ◽  
M Mohamad ◽  
R Wannahari ◽  
N F Shoparwe ◽  
WHW Osman ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Ramona B. J. Ihlenburg ◽  
Anne-Catherine Lehnen ◽  
Joachim Koetz ◽  
Andreas Taubert

New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.


2018 ◽  
Author(s):  
Bakri Rio Rahayu ◽  
Tarmizi Taher ◽  
Poedji Loekitowati Hariani ◽  
Aldes Lesbani

2019 ◽  
Vol 7 (2) ◽  
pp. 240-246
Author(s):  
Kaur Harpreet ◽  
Kaur Harpreet ◽  
Vandana Kamboj ◽  
Vandana Kamboj

Water is the most crucial thing to mankind and so its contamination by various agencies is posing a threat to the natural balance. So, in the present work, the efficiency of various adsorbents derived from plant waste, to remove different dyes from aqueous solution was evaluated. Parameters for study were contact time, concentration and pH. Various combinations of plant ashes were used for the study. It was found that adsorbent prepared from the combination of orange peels, pomegranate and banana peels ashes, exhibited good adsorption capacity for methylene blue, congo red and crystal violet. All these dyes were completely removed from the aqueous solution while methyl orange was not removed. Congo red was removed completely within 40 min of contact with the adsorbent while methyl orange took 3 hrs to be removed to the extent of 48% only. The adsorption coefficient of congo red was found to be 2.33 while value for methylene blue and crystal violet was 1 and 1.66 respectively. The characterization of adsorbent was done by Scanning Electron Microscopy and IR spectroscopy. SEM image revealed the surface of adsorbent to be made of differential pores. From the results it became evident that the low-cost adsorbent could be used as a replacement for costly traditional methods of removing colorants from water.


2019 ◽  
Vol 48 (3) ◽  
pp. 1095-1107 ◽  
Author(s):  
Meng-Jung Tsai ◽  
Jheng-Hua Luo ◽  
Jing-Yun Wu

A rhombus (4,4) grid showing two-fold 2D + 2D → 2D interweaved nets appeared to be a good adsorbent to selectively adsorb and separate anionic methyl orange (MO) and acid orange 7 (AO7) dyes over cationic methylene blue (MB) and malachite green (MG) from water with high adsorption capacities in both darkness and daylight.


Sign in / Sign up

Export Citation Format

Share Document