scholarly journals Improved Salt Tolerance of Lamtoro (Leucaena leucocephala) through the Application of Indigenous Mycorrhiza

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Delvian Delvian ◽  
Adrian Hartanto

Salt stress is one of the serious abiotic stressors which limit the growth and development of important crops in agricultural lands. Arbuscular mycorrhizal fungi (AMF) have been implemented as a strategy to mitigate the adverse effects due to an impact of salt stress through the structural and physiological adjustment. This study aimed to determine a relationship between salinity levels (0, 150, 300, and 450 mM NaCl) and AMF treatments (Glomus manihotis, Glomus etunicatum, and G. manihotis + G. etunicatum) to the salt tolerance of Leucaena leucocephala seedlings in a greenhouse. Salinity reduced the plant height, biomass, and root colonization by AMF. However, the inoculation of AMF, especially the consortium, ameliorated the negative effects by stabilizing the growth performance and supporting the photosynthetic outputs through optimum nutrient and mineral absorptions. These results were indicative through a significant interaction between salinity levels and the types of AMF treatment in all parameters except in the total leaf protein and proline contents from the two-way ANOVA results. Root colonization was highly correlated with the plant height, biomass, and total carbohydrate content with a maximum contribution conferred by the AMF consortium, based on Pearson’s correlation coefficient test and PCA analysis. Our study then showed the positive impact of AMF toward salt tolerance by L. leucocephala with potential application and cultivation in salt-stressed ecosystems.

Author(s):  
S H Ghaida ◽  
◽  
B Wasis ◽  
S W Sri Wilarso Budi

Limestone mining has the potential into environmental damage that involve modify an ecosystem. The attempt that contrived to reduce the disturbances are rehabilitation. This research was conducted to examine the growth response of Leucaena leucocephala inoculated with AMF and soil ameliorant in a limestone post-mining soil. The design used was a split-plot design in a completely randomized design with 3 factors. The first factor was AMF inoculum (Daemonorops draco AMF and MycoSilvi), the second factor was organic fertilizer of compost, and the third factor was inorganic fertilizer. The variables used in this study expressed by height, diameter, biomass, root colonization, and nutrient absorption of the plant. The analysis showed that the combination of MycoSilvi and compost 7.5% gave best result of height, diameter, and biomass, with significantly increased by 962.67%, 899.41% and 1440.67% to control plant. It also gave best result of nutrient uptake N, P, and K, with significantly increased up to 17.64 g plant-1, 2.42 g plant-1, and 18.05 g plant-1. In general, AMF showed a good percentage of root colonization with an average 36.67-86.67%. Further research is needed to determine the response to the growth of seedlings planted in the field.


2021 ◽  
Vol 11 (11) ◽  
pp. 5297
Author(s):  
Stavros D. Veresoglou ◽  
Leonie Grünfeld ◽  
Magkdi Mola

The roots of most plants host diverse assemblages of arbuscular mycorrhizal fungi (AMF), which benefit the plant hosts in diverse ways. Even though we understand that such AMF assemblages are non-random, we do not fully appreciate whether and how environmental settings can make them more or less predictable in time and space. Here we present results from three controlled experiments, where we manipulated two environmental parameters, habitat connectance and habitat quality, to address the degree to which plant roots in archipelagos of high connectivity and invariable habitats are colonized with (i) less diverse and (ii) easier to predict AMF assemblages. We observed no differences in diversity across our manipulations. We show, however, that mixing habitats and varying connectivity render AMF assemblages less predictable, which we could only detect within and not between our experimental units. We also demonstrate that none of our manipulations favoured any specific AMF taxa. We present here evidence that the community structure of AMF is less responsive to spatio-temporal manipulations than root colonization rates which is a facet of the symbiosis which we currently poorly understand.


Heliyon ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. e00936 ◽  
Author(s):  
Boubacar A. Kountche ◽  
Mara Novero ◽  
Muhammad Jamil ◽  
Tadao Asami ◽  
Paola Bonfante ◽  
...  

2018 ◽  
Vol 9 (3) ◽  
pp. 196-204
Author(s):  
Maria Paulina ◽  
Irdika Mansur ◽  
Ahmad Junaedi

Sugar palm is one of local plants spesies that may potential for reclamation program because can be planted under the stands of forest crops. Forest crops can be shade seedlings sugar palm from direct sunlight because the growth of sugar palm is relatively slow. Sugar palm can be useful even without cutting down the trees. Previously, sugar palm had been planted at PT Berau Coal and had produced fruit. The research was conducted at coal post-mining land of PT Bukit Asam, Tanjung Enim, South Sumatera. The research using combination of AMF and liming treatment is as follows, ie MaK0 (control), Mak1 (seedling with AMF without inoculation; liming 30 g plant-1), MiK0 (AMF indigenous seedling inoculation; without liming), MiK2 (AMF indigenous seedling inoculation, liming 60 g plant-1), MmK0 (AMF mycofer seedling inoculation; without liming), and MmK3 (AMF mycofer seedling inoculation, liming 120 g plant-1). The results showed that sugar palm could be grown in the coal post-mining land. The combination of AMF and liming treatment did not significant effect on observed variables of plant height, rachis length, diameter, leaves number, number of spore and root cholonization. Sugar palm seedlings that have been infected with AMF could be grown and provide a good growth response even without liming.Keywords : Arbuscular Mycorrhizal Fungi (AMF), marginal land, sugar palm


2020 ◽  
Author(s):  
Ezekiel Taiwo Afolayan

AbstractThis work compares the physiological and yield characteristics of white yam (Dioscorea rotundata – Poir) under Arbuscular mycorrhizal fungi (AMF) inoculation, green manures of Gliricidia sepium, Leucaena leucocephala and other soil amendments. The experiment was conducted on the plot of land that had been overcropped, located at the back of the male Hostel, Federal College of Education, Abeokuta, Ogun State, Nigeria. The land was cleared and heaped at 1m x 1m apart. The experimental design employed was a complete randomized design in 5 replicates. The treatments were Glomus deserticola (GD), Glomus fasciculatum (GF), Gliricidia sepium (GS), Leucaena leucocephala (LL), Poultry manure (PM) and NPK fertilizers. Soils were dug from the heaps, 20 g of the inoculums of AMF (GD/ GF) were poured into the dug hole, seeds were laid on it and covered with soil (for GD & GF treatments). Others were applied at one week after sprouting. Growth and yield Parameters were determined at harvest while relative water and chlorophyll contents were measured forth nightly from 10 weeks after treatment. Data obtained were subjected to ANOVA while means were separated by Duncan multiple range test at P> 0.05. Results showed that growth, yield and physiological characters were enhanced in GD, GD+GF, GS and PM treated plants more than in inorganic fertilizers treated plants. There was a positive significant relationship between white yam’s growth, physiology and tuber yield. The study justifies the use of plant/animal manures and Arbuscular mycorrhizal fungi in place of inorganic fertilizers.


2017 ◽  
Vol 12 (5) ◽  
pp. 159
Author(s):  
Marlina Puspita Sari ◽  
Bambang Hadisutrisno ◽  
Suryanti Suryanti

Arbuscular mycorrhizal fungi (AMF) is known to improve the growth of shallot (Allium cepa var. aggregatum) and strengthen the resistance of plants toward disease infection.  This research aimed to find out the roles of AMF in suppressing the development of purple blotch disease caused by  Alternaria sp. on shallot in Caturtunggal, Sleman, Yogyakarta.  Inoculation of AMF either on fertilization of N, P, K or without fertilization treatment resulted on higher plant height and number of leaves compared to those without AMF inoculation. The plant inoculated with AMF had lower purple blotch disease intensity and disease progression than control and fungicide treatment. The result showed that AMF, in addition to act as the bio-fertilizer, is a potential to be a biocontrol agent.


2003 ◽  
Vol 69 (5) ◽  
pp. 2816-2824 ◽  
Author(s):  
Fritz Oehl ◽  
Ewald Sieverding ◽  
Kurt Ineichen ◽  
Paul Mäder ◽  
Thomas Boller ◽  
...  

ABSTRACT The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.


Sign in / Sign up

Export Citation Format

Share Document