scholarly journals Subway Obstacle Perception and Identification Method Based on Cloud Edge Collaboration

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Feng ◽  
Ronghui Yan ◽  
Guangping Liu ◽  
Chen Shao

The traditional analysis method of train obstacle uses isomorphic sensors to obtain the state information and completes detection and identification analysis at the remote end of a network. A single data sample and more processing links will reduce the accuracy and speed analysis for subway encountering obstacles. To solve this problem, this paper proposes a subway obstacle perception and identification method based on cloud edge cooperation. The subway monitoring cloud platform realizes the training and construction of a detection model, and the network edge side completes the situation awareness of track state and real-time action when the train encounters obstacles. Firstly, the railroad track position is detected by cameras, and subway running track is identified by Mask RCNN algorithm to determine the detection area of obstacles in the process of subway train running. At the edge of network, the feature-level fusion of data collected by sensor cluster is carried out to provide reliable data support for detection work. Then, based on the DeepSort and YOLOv3 network models, the subway obstacle detection model is constructed on the subway monitoring cloud platform. Moreover, a trained model is distributed to the network edge side, so as to realize the fast and efficient perception and action of obstacles. Finally, the simulation verification is implemented based on actual collected datasets. Experimental results show that the proposed method has good detection accuracy and efficiency, which maintains 98.9% and 1.43 s for obstacle detection accuracy and recognition time in complex scenes.

2021 ◽  
Vol 13 (15) ◽  
pp. 3024
Author(s):  
Huiqin Ma ◽  
Wenjiang Huang ◽  
Yingying Dong ◽  
Linyi Liu ◽  
Anting Guo

Fusarium head blight (FHB) is a major winter wheat disease in China. The accurate and timely detection of wheat FHB is vital to scientific field management. By combining three types of spectral features, namely, spectral bands (SBs), vegetation indices (VIs), and wavelet features (WFs), in this study, we explore the potential of using hyperspectral imagery obtained from an unmanned aerial vehicle (UAV), to detect wheat FHB. First, during the wheat filling period, two UAV-based hyperspectral images were acquired. SBs, VIs, and WFs that were sensitive to wheat FHB were extracted and optimized from the two images. Subsequently, a field-scale wheat FHB detection model was formulated, based on the optimal spectral feature combination of SBs, VIs, and WFs (SBs + VIs + WFs), using a support vector machine. Two commonly used data normalization algorithms were utilized before the construction of the model. The single WFs, and the spectral feature combination of optimal SBs and VIs (SBs + VIs), were respectively used to formulate models for comparison and testing. The results showed that the detection model based on the normalized SBs + VIs + WFs, using min–max normalization algorithm, achieved the highest R2 of 0.88 and the lowest RMSE of 2.68% among the three models. Our results suggest that UAV-based hyperspectral imaging technology is promising for the field-scale detection of wheat FHB. Combining traditional SBs and VIs with WFs can improve the detection accuracy of wheat FHB effectively.


Author(s):  
Xuewu Zhang ◽  
Yansheng Gong ◽  
Chen Qiao ◽  
Wenfeng Jing

AbstractThis article mainly focuses on the most common types of high-speed railways malfunctions in overhead contact systems, namely, unstressed droppers, foreign-body invasions, and pole number-plate malfunctions, to establish a deep-network detection model. By fusing the feature maps of the shallow and deep layers in the pretraining network, global and local features of the malfunction area are combined to enhance the network's ability of identifying small objects. Further, in order to share the fully connected layers of the pretraining network and reduce the complexity of the model, Tucker tensor decomposition is used to extract features from the fused-feature map. The operation greatly reduces training time. Through the detection of images collected on the Lanxin railway line, experiments result show that the proposed multiview Faster R-CNN based on tensor decomposition had lower miss probability and higher detection accuracy for the three types faults. Compared with object-detection methods YOLOv3, SSD, and the original Faster R-CNN, the average miss probability of the improved Faster R-CNN model in this paper is decreased by 37.83%, 51.27%, and 43.79%, respectively, and average detection accuracy is increased by 3.6%, 9.75%, and 5.9%, respectively.


2021 ◽  
Vol 11 (8) ◽  
pp. 3531
Author(s):  
Hesham M. Eraqi ◽  
Karim Soliman ◽  
Dalia Said ◽  
Omar R. Elezaby ◽  
Mohamed N. Moustafa ◽  
...  

Extensive research efforts have been devoted to identify and improve roadway features that impact safety. Maintaining roadway safety features relies on costly manual operations of regular road surveying and data analysis. This paper introduces an automatic roadway safety features detection approach, which harnesses the potential of artificial intelligence (AI) computer vision to make the process more efficient and less costly. Given a front-facing camera and a global positioning system (GPS) sensor, the proposed system automatically evaluates ten roadway safety features. The system is composed of an oriented (or rotated) object detection model, which solves an orientation encoding discontinuity problem to improve detection accuracy, and a rule-based roadway safety evaluation module. To train and validate the proposed model, a fully-annotated dataset for roadway safety features extraction was collected covering 473 km of roads. The proposed method baseline results are found encouraging when compared to the state-of-the-art models. Different oriented object detection strategies are presented and discussed, and the developed model resulted in improving the mean average precision (mAP) by 16.9% when compared with the literature. The roadway safety feature average prediction accuracy is 84.39% and ranges between 91.11% and 63.12%. The introduced model can pervasively enable/disable autonomous driving (AD) based on safety features of the road; and empower connected vehicles (CV) to send and receive estimated safety features, alerting drivers about black spots or relatively less-safe segments or roads.


2020 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Wei Zhao ◽  
William Yamada ◽  
Tianxin Li ◽  
Matthew Digman ◽  
Troy Runge

In recent years, precision agriculture has been researched to increase crop production with less inputs, as a promising means to meet the growing demand of agriculture products. Computer vision-based crop detection with unmanned aerial vehicle (UAV)-acquired images is a critical tool for precision agriculture. However, object detection using deep learning algorithms rely on a significant amount of manually prelabeled training datasets as ground truths. Field object detection, such as bales, is especially difficult because of (1) long-period image acquisitions under different illumination conditions and seasons; (2) limited existing prelabeled data; and (3) few pretrained models and research as references. This work increases the bale detection accuracy based on limited data collection and labeling, by building an innovative algorithms pipeline. First, an object detection model is trained using 243 images captured with good illimitation conditions in fall from the crop lands. In addition, domain adaptation (DA), a kind of transfer learning, is applied for synthesizing the training data under diverse environmental conditions with automatic labels. Finally, the object detection model is optimized with the synthesized datasets. The case study shows the proposed method improves the bale detecting performance, including the recall, mean average precision (mAP), and F measure (F1 score), from averages of 0.59, 0.7, and 0.7 (the object detection) to averages of 0.93, 0.94, and 0.89 (the object detection + DA), respectively. This approach could be easily scaled to many other crop field objects and will significantly contribute to precision agriculture.


Author(s):  
Leijin Long ◽  
Feng He ◽  
Hongjiang Liu

AbstractIn order to monitor the high-level landslides frequently occurring in Jinsha River area of Southwest China, and protect the lives and property safety of people in mountainous areas, the data of satellite remote sensing images are combined with various factors inducing landslides and transformed into landslide influence factors, which provides data basis for the establishment of landslide detection model. Then, based on the deep belief networks (DBN) and convolutional neural network (CNN) algorithm, two landslide detection models DBN and convolutional neural-deep belief network (CDN) are established to monitor the high-level landslide in Jinsha River. The influence of the model parameters on the landslide detection results is analyzed, and the accuracy of DBN and CDN models in dealing with actual landslide problems is compared. The results show that when the number of neurons in the DBN is 100, the overall error is the minimum, and when the number of learning layers is 3, the classification error is the minimum. The detection accuracy of DBN and CDN is 97.56% and 97.63%, respectively, which indicates that both DBN and CDN models are feasible in dealing with landslides from remote sensing images. This exploration provides a reference for the study of high-level landslide disasters in Jinsha River.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3616
Author(s):  
Jan Ubbo van Baardewijk ◽  
Sarthak Agarwal ◽  
Alex S. Cornelissen ◽  
Marloes J. A. Joosen ◽  
Jiska Kentrop ◽  
...  

Early detection of exposure to a toxic chemical, e.g., in a military context, can be life-saving. We propose to use machine learning techniques and multiple continuously measured physiological signals to detect exposure, and to identify the chemical agent. Such detection and identification could be used to alert individuals to take appropriate medical counter measures in time. As a first step, we evaluated whether exposure to an opioid (fentanyl) or a nerve agent (VX) could be detected in freely moving guinea pigs using features from respiration, electrocardiography (ECG) and electroencephalography (EEG), where machine learning models were trained and tested on different sets (across subject classification). Results showed this to be possible with close to perfect accuracy, where respiratory features were most relevant. Exposure detection accuracy rose steeply to over 95% correct during the first five minutes after exposure. Additional models were trained to correctly classify an exposed state as being induced either by fentanyl or VX. This was possible with an accuracy of almost 95%, where EEG features proved to be most relevant. Exposure detection models that were trained on subsets of animals generalized to subsets of animals that were exposed to other dosages of different chemicals. While future work is required to validate the principle in other species and to assess the robustness of the approach under different, realistic circumstances, our results indicate that utilizing different continuously measured physiological signals for early detection and identification of toxic agents is promising.


Author(s):  
Runze Liu ◽  
Guangwei Yan ◽  
Hui He ◽  
Yubin An ◽  
Ting Wang ◽  
...  

Background: Power line inspection is essential to ensure the safe and stable operation of the power system. Object detection for tower equipment can significantly improve inspection efficiency. However, due to the low resolution of small targets and limited features, the detection accuracy of small targets is not easy to improve. Objective: This study aimed to improve the tiny targets’ resolution while making the small target's texture and detailed features more prominent to be perceived by the detection model. Methods: In this paper, we propose an algorithm that employs generative adversarial networks to improve small objects' detection accuracy. First, the original image is converted into a super-resolution one by a super-resolution reconstruction network (SRGAN). Then the object detection framework Faster RCNN is utilized to detect objects on the super-resolution images. Result: The experimental results on two small object recognition datasets show that the model proposed in this paper has good robustness. It can especially detect the targets missed by Faster RCNN, which indicates that SRGAN can effectively enhance the detailed information of small targets by improving the resolution. Conclusion: We found that higher resolution data is conducive to obtaining more detailed information of small targets, which can help the detection algorithm achieve higher accuracy. The small object detection model based on the generative adversarial network proposed in this paper is feasible and more efficient. Compared with Faster RCNN, this model has better performance on small object detection.


2021 ◽  
Vol 15 (4) ◽  
pp. 18-30
Author(s):  
Om Prakash Samantray ◽  
Satya Narayan Tripathy

There are several malware detection techniques available that are based on a signature-based approach. This approach can detect known malware very effectively but sometimes may fail to detect unknown or zero-day attacks. In this article, the authors have proposed a malware detection model that uses operation codes of malicious and benign executables as the feature. The proposed model uses opcode extract and count (OPEC) algorithm to prepare the opcode feature vector for the experiment. Most relevant features are selected using extra tree classifier feature selection technique and then passed through several supervised learning algorithms like support vector machine, naive bayes, decision tree, random forest, logistic regression, and k-nearest neighbour to build classification models for malware detection. The proposed model has achieved a detection accuracy of 98.7%, which makes this model better than many of the similar works discussed in the literature.


Author(s):  
Chuan Ye ◽  
Liming Zhao ◽  
Qiyan Wang ◽  
Bo Pan ◽  
Youchun Xie ◽  
...  

Abstract In order to accurately detect the abnormal looseness of strapping in the process of steel coil hoisting, an accurate detection method of strapping abnormality based on CCD structured light active imaging is proposed. Firstly, a maximum entropy laser stripe automatic segmentation model integrating multi-scale saliency features is constructed. With the help of saliency detection model, the purpose is to reduce the interference of the environment to the laser stripe and highlight the distinguishability between the stripe and the background. Then, the maximum entropy is used to segment the fused saliency features and accurately extract the stripe contour. Finally, the stripe normal field is obtained by calculating the stripe gradient vector, the stripe center line is extracted based on the stripe distribution normal direction, and the abnormal strapping is recognized online according to the stripe center. Experiments show that the proposed method is effective in terms of detection accuracy and time efficiency, and has certain engineering application value.


Sign in / Sign up

Export Citation Format

Share Document