scholarly journals Development of a Prognostic Model Based on the Identification of EMT-Related lncRNAs in Triple-Negative Breast Cancer

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jiani Guo ◽  
Xuesong Yi ◽  
Zhuqing Ji ◽  
Mengchu Yao ◽  
Yu Yang ◽  
...  

Background. Triple-negative breast cancer (TNBC) remains the most incurable subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. It is generally acknowledged that epithelial-mesenchymal transition (EMT) is the key step in tumor metastasis. Methods. With the application of TCGA and GEO databases, we identified EMT-related lncRNAs by the Cox univariate regression analysis. Optimum risk scores were calculated and used to divide TNBC patients into high-/low-risk subgroups by the median value using the Lasso regression analysis. The Kaplan–Meier and ROC curve analyses were applied for model validation. Then, we assessed the risk model from multi-omic aspects including immune infiltration, drug sensitivity, mutability spectrum, signaling pathways, and clinical indicators. We also analyzed the expression pattern of lncRNAs involved in the model using qRT-PCR in TNBC cell lines and constructed the ceRNA network. Results. The risk model was composed of EMT-related long noncoding RNAs (lncRNAs), which seemed to be valuable in the prognostic prediction of TNBC patients. The model could act as an independent prognostic factor of TNBC and showed a robust prognostic ability in the stratification analysis. Further investigation demonstrated that the expression of lncRNAs was different between high aggressive and low aggressive TNBC cell lines, as well as TNBC patients. Conclusions. Together, our study successfully established a risk model with great accuracy and efficacy in the prognostic prediction of TNBC patients.

2021 ◽  
Author(s):  
Jiani Guo ◽  
Xuesong Yi ◽  
Zhuqing Ji ◽  
Mengchu Yao ◽  
Yu Yang ◽  
...  

Abstract Background: Triple negative breast cancer (TNBC) remains the most incurable subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. It is generally acknowledged that epithelial-mesenchymal transition (EMT) is the key step in tumor metastasis. Methods: With the application of TCGA and GEO database, we identified EMT-related lncRNAs by Cox univariate regression analysis. Optimum risk scores were calculated and used to divide TNBC patients into high/low-risk subgroups by the median value using lasso regression analysis. Kaplan-Meier and ROC curve analyses were applied for model validation. Then we assessed the risk model from multi-omic aspects including immune infiltration, drug sensitivity, mutability spectrum, signaling pathways, and clinical indicators.Results: The risk model was composed of 22 EMT-related long noncoding RNAs (lncRNAs), which seemed to be valuable in prognostic prediction of TNBC patients. The model could act as an independent prognostic factor of TNBC, and showed a robust prognostic ability in the stratification analysis. Conclusions: Together, our study successfully established a risk model with great accuracy and efficacy in prognosis prediction of TNBC patients.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xinyu Deng ◽  
Morris Kohanfars ◽  
Huan Ming Hsu ◽  
Puneet Souda ◽  
Joe Capri ◽  
...  

Because of the absence of a clear therapeutic target for triple negative breast cancer (TNBC), conventional chemotherapy is the only available systemic treatment option for these patients. Despite chemotherapy treatment, TNBC patients still have worse prognosis when compared with other breast cancer patients. The study is to investigate unique phosphorylated proteins expressed in chemoresistant TNBC cell lines. In the current study, twelve TNBC cell lines were subjected to drug sensitivity assays against chemotherapy drugs docetaxel, doxorubicin, gemcitabine, and cisplatin. Based on their half maximal inhibitory concentrations, four resistant and two sensitive cell lines were selected for further analysis. The phosphopeptides from these cells were enriched with TiO2 beads and fractionated using strong cation exchange. 1,645 phosphoprotein groups and 9,585 unique phosphopeptides were identified by a high throughput LC-MS/MS system LTQ-Orbitrap. The phosphopeptides were further filtered with Ascore system and 1,340 phosphoprotein groups, 2,760 unique phosphopeptides, and 4,549 unique phosphosites were identified. Our study suggested that differentially phosphorylated Cdk5, PML, AP-1, and HSF-1 might work together to promote vimentin induced epithelial to mesenchymal transition (EMT) in the drug resistant cells. EGFR and HGF were also shown to be involved in this process.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xinxing Wang ◽  
Bingjian Xue ◽  
Yujie Zhang ◽  
Guangcheng Guo ◽  
Xin Duan ◽  
...  

AbstractAn increasing amount of evidence has proven the vital role of circular RNAs (circRNAs) in cancer progression. However, there remains a dearth of knowledge on the function of circRNAs in triple-negative breast cancer (TNBC). Utilizing a circRNA microarray dataset, four circRNAs were identified to be abnormally expressed in TNBC. Among them, circBACH2 was most significantly elevated in TNBC cancerous tissues and its high expression was positively correlated to the malignant progression of TNBC patients. In normal human mammary gland cell line, the overexpression of circBACH2 facilitated epithelial to mesenchymal transition and cell proliferation. In TNBC cell lines, circBACH2 knockdown suppressed the malignant progression of TNBC cells. Mechanistically, circBACH2 sponged miR-186-5p and miR-548c-3p, thus releasing the C-X-C chemokine receptor type 4 (CXCR4) expression. The interference of miR-186-5p/miR-548c-3p efficiently promoted the cell proliferation, migration, and invasion suppressed by circBACH2 knockdown in the TNBC cell lines. Finally, circBACH2 knockdown repressed the growth and lung metastasis of TNBC xenografts in nude mice. In summary, circBACH2 functions as an oncogenic circRNA in TNBC through a novel miR-186-5p/miR-548c-3p/CXCR4 axis.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pradip Shahi Thakuri ◽  
Megha Gupta ◽  
Sunil Singh ◽  
Ramila Joshi ◽  
Eric Glasgow ◽  
...  

Abstract Background Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.


2021 ◽  
Author(s):  
Jianli Ma ◽  
Wenhui Zhao ◽  
Han Zhang ◽  
Zhong Chu ◽  
Huili Liu ◽  
...  

Abstract BackgroundBreast cancer is the main cause of death among women worldwide. More and more long non-coding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors during cancer development. However, whether ANRIL is involved in drug resistance in triple-negative breast cancer (TNBC) has not been investigated. MethodsLuciferase reporter assay was conducted to verify the binding of miR-125a and ANRIL. RT-PCR and western blot were performed to detect the expression of miR-125a, ANRIL and ENO1. Gene silence and overexpression experiments as well as CCK-8 and colony formation assays on TNBC cell lines were performed to determine the regulation of molecular pathways. Glycolysis analysis was performed with Seahorse extracellular flux methodology. ResultsANRIL expression in TNBC patients and TNBC cells was examined and we found that ANRIL expression was upregulated in both TNBC patients and TNBC cell lines. Knockdown of ANRIL increased the cytotoxic effect of ADR and inhibited HIF-1α-dependent glycolysis in TNBC cells. In addition, we found that ANRIL negatively regulated miR-125a expression in TNBC cell lines. Besides, a dual-luciferase reporter assay proved ANRIL functioned as a sponger of miR-125a. Further investigation revealed that ENO1 was a target of miR-125a and positively regulated by ANRIL in TNBC cells. Additionally, ANRIL upregulation reversed miR-125-mediated inhibition on HIF-1α-dependent glycolysis in TNBC cells. More notably, 2-deoxy-glucose (2-DG) attenuated ANRIL-induced increase of drug resistance in TNBC cells. ConclusionsTaken together, our study was the first to identify that knockdown of ANRIL plays an active role in overcoming the drug resistance in TNBC by inhibiting glycolysis through the miR-125a/ENO1 pathway, which maybe serve useful for the development of novel therapeutic targets.


2021 ◽  
Author(s):  
Pan Wang ◽  
Wenju Chen ◽  
Yaqiong Zhang ◽  
Qianyi Zhong ◽  
Zhaoyun Li ◽  
...  

Abstract Objective. Breast cancer is one of the most common malignant and highly heterogeneous tumors in women. MicroRNAs (miRNAs), such as miR-1246, play important roles in various types of malignant cancers, including triple-negative breast cancer (TNBC). However, the biological role of miR-1246 in TNBC has not yet been fully elucidated. In this study, we studied the role of miR-1246 in the occurrence and development of TNBC and its mechanism of action.Methods. Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays were performed to observe the effects of miR-1246 on TNBC cell proliferation, migration, and invasion, respectively. The expression of epithelial-mesenchymal transition (EMT) markers was detected by western blotting. Dual luciferase reporter assays were performed to determine whether DYRK1A is a novel target of miR-1246. In addition, an immunoprecipitation experiment was performed to verify the binding of DYRK1A to PGRN. Rescue experiments were performed to determine whether DYRK1A is a novel target of miR-1246 and whether miR-1246 suppresses the metastasis of breast cancer cells by targeting the DRAK1A/PGRN axis to prevent the epithelial-mesenchymal transition.Results. Our results show that miR‑1246 suppresses the proliferation, migration, and invasion of TNBC cells and that DYRK1A is a novel target of miR-1246. MiR‑1246 plays a suppressive role in the regulation of the EMT of TNBC cells by targeting DYRK1A. DYRK1A mediates the metastasis of triple-negative breast cancer via activation of the EMT. We identified PGRN as a novel DYRK1A-interacting protein. DYRK1A and PGRN act together to regulate the occurrence and development of breast cancer through miR-1246.Conclusion. miR-1246 attenuates TNBC cell invasion and the EMT by targeting the DRAK1A/PGRN axis. Our data suggest that miR‑1246 may be used to develop novel early-stage diagnostic and therapeutic strategies for TNBC.


2021 ◽  
Vol 17 (12) ◽  
pp. 2351-2363
Author(s):  
Zeliang Wu ◽  
Lin Zhu ◽  
Junhua Mai ◽  
Haifa Shen ◽  
Rong Xu

Due to its high heterogeneity and aggressiveness, cytotoxic chemotherapy is still a mainstay treatment for triple negative breast cancer. Unfortunately, the above mentioned has not significantly ameliorated TNBC patients and induces drug resistance. Exploring the mechanisms underlying the chemotherapy sensitivity of TNBC and developing novel sensitization strategies are promising approaches for improving the prognosis of patients. Rad51, a key regulator of DNA damage response pathway, repairs DNA damage caused by genotoxic agents through “homologous recombination repair.” Therefore, Rad51 inhibition may increase TNBC cell sensitivity to anticancer agents. Based on these findings, we first designed Rad51 siRNA to inhibit the Rad51 protein expression in vitro and evaluated the sensitivity of TNBC cells to doxorubicin. Subsequently, we constructed discoidal porous silicon microparticles (pSi) and encapsulated discoidal 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes/siRad51 (PS-DOPC/siRad51) to explore the synergistic antitumor effects of siRad51 and doxorubicin on two mouse models of TNBC in vivo. Our in vitro studies indicated that siRad51 enhanced the efficacy of DOX chemotherapy and significantly suppressed TNBC cell proliferation and metastasis. This effect was related to apoptosis induction and epithelial to mesenchymal transition (EMT) inhibition. siRad51 altered the expression of apoptosis- and EMT-related proteins. In orthotopic and lung metastasis xenograft models, the administration of PS-DOPC/siRad51 in combination with DOX significantly alleviated the primary tumor burden and lung metastasis, respectively. Our current studies present an efficient strategy to surmount chemotherapy resistance in TNBC through microvector delivery of siRad51.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 506 ◽  
Author(s):  
Lamyae El Khalki ◽  
Virginie Maire ◽  
Thierry Dubois ◽  
Abdelmajid Zyad

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. Non-available targeted therapy for TNBC represents its biggest treatment challenge. Thus, finding new promising effective drugs is urgently needed. In the present study, we investigated how berberine, a natural isoquinoline, impairs the survival of TNBC cells in both cellular and molecular levels. Our experimental model was based on the use of eight TNBC cell lines: MDA-MB-468, MDA-MB-231, HCC70, HCC38, HCC1937, HCC1143, BT-20, and BT-549. Berberine was cytotoxic against all treated TNBC cell lines. The most sensitive cell lines were HCC70 (IC50 = 0.19 µM), BT-20 (IC50 = 0.23 µM) and MDA-MB-468 (IC50 = 0.48 µM). Using flow cytometry techniques, berberine, at 0.5 and 1 µM for 120 and 144 h, not only induced cell cycle arrest, at G1 and/or G2/M phases, but it also triggered significant apoptosis. At the molecular level, these results are consistent with the expression of their related proteins using Western blot assays. Interestingly, while berberine was cytotoxic against TNBC cells, it had no effect on the viability of normal human breast cells MCF10A cultured in a 3D matrigel model. These results suggest that berberine may be a good potential candidate for TNBC drug development.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14099-e14099 ◽  
Author(s):  
Naoise C Synnott ◽  
Matthias R Bauer ◽  
Stephen F. Madden ◽  
Alyson M. Murray ◽  
Rut Klinger ◽  
...  

e14099 Background:The identification of a targeted therapy for patients with triple-negative breast cancer (TNBC) is one of the most urgent needs in breast cancer therapeutics. Since the p53 gene is mutated in approximately 80% of TNBC patients, it is a potential therapeutic target for this form of breast cancer. PK11007 is a 2-sulfonypyrimidine that stabilizes and reactivates mutant p53 (Bauer et al, PNAS 2016). The compound recently was reported to preferentially decrease viability in p53-compromised cancer cells. The aim of this investigation was to evaluate PK11007 as a potential new treatment for TNBC. Methods: Cell viability was determined using the MTT assay. Apoptosis was detected using Annexin V Apoptosis Detection Kit. Migration was determined by Transwell migration assay. Knockdowns of p53 protein were carried out using predesigned Flexitube sequences (Qiagen). Results: IC50 values for inhibition of proliferation by PK11007 in the panel of 17 breast cell lines ranged from 2.3 to 42.2 μM. There were significantly lower IC50values for TNBC than for non-TNBC cell lines (p = 0.03) and for p53-mutated cell lines compared with p53 WT cells (p = 0.003). Response to PK11007 however, was independent of ER or HER2 status of the cells. In addition, PK11007 induced apoptosis and inhibited migration in p53 mutant cell lines. Using RNAseq and gene ontogeny analysis, we found that PK11007 altered the expression of genes enriched in pathways involved in regulated cell death, regulation of apoptosis, signal transduction, protein refolding and locomotion. To establish if PK11007 acts by targeting mutant p53, we used siRNA to knockdown p53 in 3 p53-mutated TNBC cell lines. Reduction in p53 protein levels resulted in a significant decrease in the growth inhibitory effects of PK11007, in all 3 cell lines investigated, suggesting that PK11007 mediates growth inhibition via p53. The observations that PK11007 inhibited cell growth, induced apoptosis, blocked cell migration and altered genes involved in cell death, are all consistent with the ability of PK11007 to activate mutant p53. Conclusions: Based on our data, we conclude that targeting mutant p53 with PK11007 is a potential approach for treating p53-mutated TNBC.


Sign in / Sign up

Export Citation Format

Share Document