scholarly journals Major Outer Membrane Protein from Legionella pneumophila Inhibits Phagocytosis but Enhances Chemotaxis of RAW 264.7 Macrophages by Regulating the FOXO1/Coronin-1 Axis

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zehui Yang ◽  
Yingying Chen ◽  
Qiang Zhang ◽  
Xiaodong Chen ◽  
Ze Deng

Legionella pneumophila is an intracellular pathogen that can cause Legionnaire’s disease by invading alveolar epithelial cells and macrophages. The major outer membrane protein (MOMP) plays an important role in the interaction between bacteria and host cells. However, the role of MOMP in the process of L. pneumophila invasion of macrophages and its working mechanism remain unknown. We aimed to explore the effects of MOMP on phagocytosis and chemotaxis of RAW 264.7 macrophages. The chemotactic activity, toxicity, and phagocytosis of RAW 264.7 cocultured with different concentrations of MOMP were determined by Transwell, CCK-8, and neutral red uptake assays, respectively. Target genes were detected by double-luciferase and pull down assays. qRT-PCR and Western blot were performed to analyze the expression of several important proteins involved in the immune response pathway, including coronin-1, interleukins (IL-10), forkhead transcription factor 1 (FOXO1), nucleotide-binding oligomerization domain protein (NOD) 1, NOD2, and receptor-interacting protein (RIP) 2. After coculturing with MOMP, cytological observation indicated a decrease of phagocytosis and a marked increase of chemotaxis in RAW 264.7 macrophages. The phagocytosis degree of RAW 264.7 macrophage varied with the concentration gradient of MOMP in a time-dependent manner. MOMP could increase the expression levels of MCP-1, IL-10, NOD2, and RIP2 and decrease the expression levels of FOXO1 and coronin-1 in cell culture supernatants. In addition, we found that FOXO1 could promote its transcription by binding to the promoter of coronin-1. The results of the present study suggested that MOMP could inhibit phagocytosis and facilitate chemotaxis of RAW 264.7 macrophage, which might be associated with the FOXO1/coronin-1 axis.

1990 ◽  
Vol 172 (4) ◽  
pp. 1201-1210 ◽  
Author(s):  
C Bellinger-Kawahara ◽  
M A Horwitz

Legionella pneumophila is a facultative intracellular bacterial pathogen that parasitizes human monocytes and alveolar macrophages. Previous studies from this laboratory have shown that monocyte complement receptors CR1 and CR3 and complement component C3 in serum mediate L. pneumophila phagocytosis. In this study, we have explored C3 fixation to L. pneumophila. We developed a whole-cell enzyme-linked immunosorbent assay (ELISA) to measure C3 fixation to the bacterial surface. By this assay, C3 fixes to L. pneumophila that are opsonized in fresh nonimmune serum, and C3 fixation takes place via the alternative pathway of complement activation. Immunoblot analysis of opsonized L. pneumophila indicated that C3 fixes selectively to specific acceptor molecules of L. pneumophila. Consistent with this, when nitrocellulose blots of whole L. pneumophila or bacterial components are incubated in fresh nonimmune serum, C3 fixes exclusively to the major outer membrane protein (MOMP) of L. pneumophila, a porin; C3 does not fix to L. pneumophila LPS on these blots. To further explore the role of MOMP in C3 fixation and phagocytosis, we reconstituted purified MOMP into liposomes. By the ELISA, MOMP-liposomes, but not plain liposomes lacking MOMP, avidly fix C3. Consistent with a dominant role for MOMP in C3 fixation, MOMP-liposomes form a C3 complex of the same apparent molecular weight as whole L. pneumophila in nonimmune serum. Opsonized radioiodinated MOMP-liposomes avidly adhere to monocytes, and adherence is dose dependent upon serum. By electron microscopy, opsonized MOMP-liposomes are efficiently phagocytized by human monocytes, and phagocytosis takes place by a conventional appearing form of phagocytosis. This study demonstrates that C3 fixes selectively to the MOMP of L. pneumophila, and that, in the presence of nonimmune serum, MOMP can mediate phagocytosis of liposomes and, potentially, phagocytosis of intact L. pneumophila by human monocytes.


1998 ◽  
Vol 42 (11) ◽  
pp. 2870-2876 ◽  
Author(s):  
P. Christian Lück ◽  
Jürgen W. Schmitt ◽  
Arne Hengerer ◽  
Jürgen H. Helbig

ABSTRACT We determined the MICs of ampicillin, ciprofloxacin, erythromycin, imipenem, and rifampin for two clinical isolates of Legionella pneumophila serogroup 1 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and by quantitative culture. To test the influence of subinhibitory concentrations (sub-MICs) of antimicrobial agents on Legionella uptake into Acanthamoeba castellanii and U937 macrophage-like cells, both strains were pretreated with 0.25 MICs of the antibiotics for 24 h. In comparison to that for the untreated control, subinhibitory concentrations of antibiotics significantly reducedLegionella uptake into the host cells. Measurement of the binding of monoclonal antibodies against several Legionellaantigens by enzyme-linked immunoassays indicated that sub-MIC antibiotic treatment reduced the expression of the macrophage infectivity potentiator protein (Mip), the Hsp 60 protein, the outer membrane protein (OmpM), an as-yet-uncharacterized protein of 55 kDa, and a few lipopolysaccharide (LPS) epitopes. In contrast, the expression of some LPS epitopes recognized by monoclonal antibodies 8/5 and 30/4 as well as a 45-kDa protein, a 58-kDa protein, and the major outer membrane protein (OmpS) remained unaffected.


Sign in / Sign up

Export Citation Format

Share Document