scholarly journals Significance of Nonsimilar Numerical Simulations in Forced Convection from Stretching Cylinder Subjected to External Magnetized Flow of Sisko Fluid

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jifeng Cui ◽  
Umer Farooq ◽  
Ahmed Jan ◽  
Murtada K. Elbashir ◽  
Waseem Asghar Khan ◽  
...  

The practice of flowing effort is participating in various industries especially in nutrition productions all around the world. These fluids practices are utilized extensively in nutrition handling productions by making use of sticky liquids to produce valuable food manufactured goods in bulk. Nevertheless, such productions ought to guarantee that involved equipment such as pipelines are maintained clean as well as are cleared out for the efficient movement of fluids. The nonsimilar characteristics of involuntary convection from circular cylinder stretching in the axial direction subjected to an external flow of Sisko fluid characterized by the freely growing boundary layers (BL) are presented in this research. A circular cylinder is submerged in a stationary fluid. The axial stretching of the cylinder causes external fluid flow. The magnetic force of strength ″ B 0 ″ is enforced in the transverse direction. Because of the fluid's high viscosity, frictional heating due to viscous dissipation is quite significant. The flow is three dimensional but with no circumferential variations. The governing equations for axisymmetric flow that include the mass balance, x -momentum, and heat equation are modeled through conservation laws. The dimensionless system is developed by employing appropriate nonsimilar transformations. The numerical analyses are presented by adapting local nonsimilarity via finite-difference (FDM)-based MATLAB algorithm bvp4c. The characteristics of dimensionless numbers are determined by graphs that are plotted on momentum and heat equations. The nonsimilar simulations have been compared with the existing local similar solutions. Fluid velocity is increased as the material and curvature parameters are increased, resulting in improved heat transfer. The deviation in skin friction and local Nusselt number against the various dimensionless numbers is also analyzed.

Author(s):  
M. Mansouri ◽  
M. M. Khonsari ◽  
D. Y. Hua

A model is developed to predict the thermal behavior of two sliding bodies undergoing oscillatory relative motion. The thermal model is capable of predicting the temperature rise distribution within the pin-bushing pair and the housing. The bodies geometrically form a pin-bushing configuration and the Hertzian line contact theory is used to approximate the contact pressure and the width. A quasi- three dimensional temperature model is developed by averaging the temperature in the axial direction. The resulting dimensionless heat equations and proper boundary conditions are solved by the finite element method. A series of dimensionless equations for use at the design stage is presented. A test rig capable of inducing oscillatory motion under heavy loading condition is used for measuring friction and temperature. The measured coefficient of friction history, which is curve fit as a function of time, is used in the simulations. The description of the test rig, modeling aspects, and the future extension of the research comprise the contents of this paper.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ali Ahmadian ◽  
Muhammad Bilal ◽  
Muhammad Altaf Khan ◽  
Muhammad Imran Asjad

Abstract The main feature of the present numerical model is to explore the behavior of Maxwell nanoliquid moving within two horizontal rotating disks. The disks are stretchable and subjected to a magnetic field in axial direction. The time dependent characteristics of thermal conductivity have been considered to scrutinize the heat transfer phenomena. The thermophoresis and Brownian motion features of nanoliquid are studied with Buongiorno model. The lower and upper disk's rotation for both the cases, same direction as well as opposite direction of rotation is investigated. The subsequent arrangement of the three dimensional Navier Stoke’s equations along with energy, mass and Maxwell equations are diminished to a dimensionless system of equations through the Von Karman’s similarity framework. The comparative numerical arrangement of modeled equations is further set up by built-in numerical scheme “boundary value solver” (Bvp4c) and Runge Kutta fourth order method (RK4). The various physical constraints, such as Prandtl number, thermal conductivity, magnetic field, thermal radiation, time relaxation, Brownian motion and thermophoresis parameters and their impact are presented and discussed briefly for velocity, temperature, concentration and magnetic strength profiles. In the present analysis, some vital characteristics such as Nusselt and Sherwood numbers are considered for physical and numerical investigation. The outcomes concluded that the disk stretching action opposing the flow behavior. With the increases of magnetic field parameter $$M$$ M the fluid velocity decreases, while improving its temperature. We show a good agreement of the present work by comparing with those published in literature.


Author(s):  
Fabian Bleier ◽  
Max Hufnagel ◽  
Tim Pychynski ◽  
Hans-Jörg Bauer ◽  
Christian Eichler

The paper presents the setup of a conjugate heat transfer study of an annular conical gap, its validation and a parameter study. The main goal of the work is to identify effects of gap width and swirl ratio on the local and global heat transfer in the annular conical gap. The validation of the numerical model is done by a comparison against experimental data from literature. It is shown that the non-axisymmetric flow in the gap can be well reproduced by a three-dimensional axisymmetric model. To identify influences of geometric and operational parameters on the cooling efficiency, a RANS parameter study of the cooling concept is performed. The parameter study includes variations of the gap width and the pre-swirl of the inlet air. The results are used to evaluate the quality of the cooling concept and to identify the effect of geometry on frictional effects and on heat transfer coefficients. In this respect it is important to separate frictional heating and convective heat transfer effects.


Author(s):  
Shouyuan Zhang

The reciprocating piston seals are crucial parts in hydraulic system, which are widely used in aerospace and military industry. A direct fluid–structure coupling method with high efficiency is proposed for solving the transient Elaso-Hydrodynamic-Lubrication problem in float piston series seal system of hydropneumatic suspension. The method is validated by theory solution of a simple pad-bearing film model. Detailed three-dimensional fluid–structure coupling model of the seal system is built using finite element discretization. Rubber material tests are carried out to obtain parameters of the third-order Ogden constitutive model for the O-ring seal. The sealing performance and friction force of the complicated series seal system are analyzed with direct fluid–structure dynamic coupling simulation in high pressure and high speeds conditions. The critical speed from mixed lubrication to full film lubrication is obtained. The fluid velocity and pressure distribution in the sealing gap along axial direction is compared. The outlet volume flux leakage in different piston speeds and inlet pressures is calculated to evaluate the sealing performance. The friction force experiment for the float piston system is carried out in various speeds. The friction force from direct fluid–structure interface simulation coincides well with the test result.


2011 ◽  
Vol 66 (8-9) ◽  
pp. 481-488
Author(s):  
Doo-Sung Lee

Abstract This paper deals with the three-dimensional analysis of viscous fluid flow in a long circular cylinder containing an ellipsoidal obstacle. The center of the ellipsoid coincides with that of the cylinder, and the flow is confined to the space between the ellipsoid and the cylinder when the fluid velocity at the large distance from the ellipsoid is uniform. The equations of the classical theory of fluid dynamics are solved in terms of an unknown function which is then shown to be the solution of a boundary integro-differential equation. A numerical solution of the integro-differential equation is obtained and the pressure on the surface of the ellipsoid is presented in graphical forms for various values of the radius of the circular tube.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Irena Lasiecka ◽  
Buddhika Priyasad ◽  
Roberto Triggiani

Abstract We consider the 𝑑-dimensional Boussinesq system defined on a sufficiently smooth bounded domain and subject to a pair { v , u } \{v,\boldsymbol{u}\} of controls localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} . Here, 𝑣 is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrarily small connected portion Γ ~ \widetilde{\Gamma} of the boundary Γ = ∂ ⁡ Ω \Gamma=\partial\Omega . Instead, 𝒖 is a 𝑑-dimensional internal control for the fluid equation acting on an arbitrarily small collar 𝜔 supported by Γ ~ \widetilde{\Gamma} . The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite-dimensional feedback control pair { v , u } \{v,\boldsymbol{u}\} localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} . In addition, they will be minimal in number and of reduced dimension; more precisely, 𝒖 will be of dimension ( d - 1 ) (d-1) , to include necessarily its 𝑑-th component, and 𝑣 will be of dimension 1. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to L 3 ⁢ ( Ω ) \boldsymbol{L}^{3}(\Omega) for d = 3 d=3 ) and a corresponding Besov space for the thermal component, q > d q>d . Unique continuation inverse theorems for suitably over-determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80s.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chenyi Su ◽  
Xingqi Xu ◽  
Jinghua Huang ◽  
Bailiang Pan

Abstract Considering the thermodynamical fluid mechanics in the gain medium and laser kinetic processes, a three-dimensional theoretical model of an exciplex-pumped Cs vapor laser with longitudinal and transverse gas flow is established. The slope efficiency of laser calculated by the model shows good agreement with the experimental data. The comprehensive three-dimensional distribution of temperature and particle density of Cs is depicted. The influence of pump intensity, wall temperature, and fluid velocity on the laser output performance is also simulated and analyzed in detail, suggesting that a higher wall temperature can guarantee a higher output laser power while causing a more significant heat accumulation in the cell. Compared with longitudinal gas flow, the transverse flow can improve the output laser power by effectively removing the generated heat accumulation and alleviating the temperature gradient in the cell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanho Moon ◽  
Kotaro Yamasaki ◽  
Yoshihiko Nagashima ◽  
Shigeru Inagaki ◽  
Takeshi Ido ◽  
...  

AbstractA tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.


Sign in / Sign up

Export Citation Format

Share Document