scholarly journals The High Expression of PTPRH Is Associated with Poor Prognosis of Human Lung Adenocarcinoma

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Aifeng Chen ◽  
Shibiao Ding ◽  
Xiaoqiang Shen ◽  
Xuai Lin

Objective. The aim of the study is to explore the prognosis value of PTPRH in patients with lung adenocarcinoma (LUAD). Methods. Oncomine, UALCAN, and GEPIA databases were employed to examine the differential expression of PTPRH between LUAD and adjacent tissues. 100 pairs of LUAD and adjacent tissue samples were involved in this study. qRT-PCR and immunohistochemical staining were performed. Meanwhile, we analyzed The Cancer Genome Atlas (TCGA) data to investigate the correlation between PTPRH gene expression and clinicopathological characteristics. Kaplan-Meier analysis and univariate and multivariate Cox analyses were performed to estimate the relationship between PTPRH expression and LUAD prognosis. The evaluation performance was verified by drawing a ROC curve. In addition, through GSEA, the changes of PTPRH expression were analyzed by GSEA to screen out primarily affected signaling pathway. Results. Oncomine, UALCAN, and GEPIA databases showed that the mRNA expression of PTPRH in LUAD tissues was significantly higher than that in adjacent tissues. qRT-PCR and immunohistochemical staining indicated the mRNA and protein levels of PTPRH in LUAD tissues were markedly upregulated. TCGA data showed that the expression of PTPRH was significantly correlated with T stage and disease stage. Kaplan-Meier analysis showed that the patients with high PTPRH expression had a poor prognosis. Univariate and multivariate Cox analyses exhibited that PTPRH expression could act as an independent prognostic factor for LUAD. The ROC curve showed that PTPRH combined with various clinicopathological features could effectively predict the prognosis of LUAD. Finally, GSEA indicated that changes in PTPRH expression level may affect p53, VEGF, Notch, and mTOR cancer-related signaling pathways. Conclusion. Our results demonstrated that PTPRH was highly expressed in LUAD and may be closely correlated with the poor prognosis of LUAD patients.

2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098154
Author(s):  
Xin Yuan ◽  
Yize Zhang ◽  
Zujiang Yu

Objective To investigate the association between microRNA-3615 (miR-3615) expression and the prognosis and clinicopathological features in patients with hepatocellular carcinoma (HCC). Methods We obtained clinicopathological and genomic data and prognostic information on HCC patients from The Cancer Genome Atlas (TCGA) database. We then analyzed differences in miR-3615 expression levels between HCC and adjacent tissues using SPSS software, and examined the relationships between miR-3615 expression levels and clinicopathological characteristics. We also explored the influence of miR-3615 expression levels on the prognosis of HCC patients using Kaplan–Meier survival curve analysis. Results Based on data for 345 HCC and 50 adjacent normal tissue samples, expression levels of miR-3615 were significantly higher in HCC tissues compared with adjacent tissues. MiR-3615 expression levels in HCC patients were negatively correlated with overall survival time and positively correlated with high TNM stage, serum Ki-67 expression level, and serum alpha-fetoprotein level. There were no significant correlations between miR-3615 expression and age, sex, and pathological grade. Conclusion MiR-3615 may be a promising new biomarker and prognostic factor for HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guojun Lu ◽  
Ying Zhou ◽  
Chenxi Zhang ◽  
Yu Zhang

BackgroundProtein-coding gene LIM Domain Kinase 1 (LIMK1) is upregulated in various tumors and reported to promote tumor invasion and metastasis. However, the prognostic values of LIMK1 and correlation with immune infiltrates in lung adenocarcinoma are still not understood. Therefore, we evaluated the prognostic role of LIMK1 and its correlation with immune infiltrates in lung adenocarcinoma.MethodsTranscriptional expression profiles of LIMK1 between lung adenocarcinoma tissues and normal tissues were downloaded from the Cancer Genome Atlas (TCGA). The LIMK1 protein expression was assessed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas. Receiver operating characteristic (ROC) curve was used to differentiate lung adenocarcinoma from adjacent normal tissues. Kaplan-Meier method was conducted to assess the effect of LIMK1 on survival. Protein-protein interaction (PPI) networks were constructed by the STRING. Functional enrichment analyses were performed using the “ClusterProfiler” package. The relationship between LIMK1 mRNA expression and immune infiltrates was determined by tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB).ResultsThe expression of LIMK1 in lung adenocarcinoma tissues was significantly upregulated than those in adjacent normal tissues. Increased LIMK1 mRNA expression was associated with lymph node metastases and high TNM stage. The ROC curve analysis showed that with a cutoff level of 4.908, the accuracy, sensitivity, and specificity for LIMK1 differentiate lung adenocarcinoma from adjacent controls were 69.5, 93.2, and 71.9%, respectively. Kaplan-Meier survival analysis showed lung adenocarcinoma patients with high- LIMK1 had a worse prognosis than those with low- LIMK1 (43.1 vs. 55.1 months, P = 0.028). Correlation analysis indicated LIMK1 mRNA expression was correlated with tumor purity and immune infiltrates.ConclusionUpregulated LIMK1 is significantly correlated with poor survival and immune infiltrates in lung adenocarcinoma. Our study suggests that LIMK1 can be used as a biomarker of poor prognosis and potential immune therapy target in lung adenocarcinoma.


2021 ◽  
Vol 27 ◽  
Author(s):  
Mei Chen ◽  
Zhenyu Nie ◽  
Hui Cao ◽  
Yuanhui Gao ◽  
Xiaohong Wen ◽  
...  

Background: Ras-related C3 botulinum toxin substrate 3 (Rac3) is overexpressed in malignancies and promotes tumor progression. However, the correlations between Rac3 expression and the clinicopathological characteristics and prognoses of patients with bladder cancer (BC) remain unclear.Methods: Data from The Cancer Genome Atlas (TCGA) were used to analyze Rac3 expression in BC and normal bladder tissues and validated using the Oncomine database, quantitative real-time PCR (qRT-PCR) and western blot. The Kaplan-Meier method was used to analyze the relationship between Rac3 expression and the prognosis of patients with BC. Cox univariate and multivariate analyses of BC patients overall survival (OS) were performed. Signaling pathways that potentially mediate Rac3 activity in BC were then analyzed by gene set enrichment analysis (GSEA).Results: The Rac3 expression in BC tissues was significantly higher than that in normal bladder tissues. Rac3 expression was significantly correlated with grade and stage. Overexpression of Rac3 was associated with a poor prognosis. GSEA showed that the cell cycle, DNA replication, p53 signaling pathway and mismatch repair were differentially enriched in the high Rac3 expression phenotype. The qRT-PCR and western blot results confirmed that the Rac3 expression in BC tissues was higher than that in normal bladder tissues.Conclusion: Rac3 is highly expressed in BC, which is related to the advanced clinicopathological variables and adverse prognosis of patients with BC. These results provide a new therapeutic target for BC.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yumiao Li ◽  
Xiaoxue Yu ◽  
Yuhao Zhang ◽  
Xiaofang Wang ◽  
Linshan Zhao ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is the most common subtype of nonsmall-cell lung cancer (NSCLC) and has a high incidence rate and mortality. The survival of LUAD patients has increased with the development of targeted therapeutics, but the prognosis of these patients is still poor. Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of LUAD. The purpose of this study was to identify novel abnormally regulated lncRNA–microRNA (miRNA)–messenger RNA (mRNA) competing endogenous RNA (ceRNA) networks that may suggest new therapeutic targets for LUAD or relate to LUAD prognosis. Methods We used the SBC human ceRNA array V1.0 to screen for differentially expressed (DE) lncRNAs and mRNAs in four paired LUAD samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate the DE lncRNAs and mRNAs. R bioinformatics packages, The Cancer Genome Atlas (TCGA) LUAD database, and Kaplan–Meier (KM) survival analysis tools were used to validate the microarray data and construct the lncRNA–miRNA–mRNA ceRNA regulatory network. Then, quantitative real-time PCR (qRT-PCR) was used to validate the DE lncRNAs in 7 LUAD cell lines. Results A total of 2819 DE lncRNAs and 2396 DE mRNAs (P < 0.05 and fold change ≥ 2 or ≤ 0.5) were identified in four paired LUAD tissue samples. In total, 255 of the DE lncRNAs were also identified in TCGA. The GO and KEGG analysis results suggested that the DE genes were most enriched in angiogenesis and cell proliferation, and were closely related to human cancers. Moreover, the differential expression of ENST00000609697, ENST00000602992, and NR_024321 was consistent with the microarray data, as determined by qRT-PCR validation in 7 LUAD cell lines; however, only ENST00000609697 was associated with the overall survival of LUAD patients (log-rank P = 0.029). Finally, through analysis of ENST00000609697 target genes, we identified the ENST00000609697–hsa-miR-6791-5p–RASL12 ceRNA network, which may play a tumor-suppressive role in LUAD. Conclusion ENST00000609697 was abnormally expressed in LUAD. Furthermore, downregulation of ENST00000609697 and its target gene RASL12 was associated with poor prognosis in LUAD. The ENST00000609697–hsa-miR-6791-5p–RASL12 axis may play a tumor-suppressive role. These results suggest new potential prognostic and therapeutic biomarkers for LUAD.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10281
Author(s):  
Xianhui Liu ◽  
Weiyu Zhang ◽  
Huanrui Wang ◽  
Chin-Hui Lai ◽  
Kexin Xu ◽  
...  

Background Previous studies have shown that RNA Polymerase III Subunit G (POLR3G) has oncogenic effects in cultured cells and mice. However, the role of POLR3G in transitional cell carcinoma (TCC) has not been reported. This study explores the potential of POLR3G as a novel molecular marker for TCC. Methods The RNA sequencing data and clinical information of patients with TCC were downloaded from The Cancer Genome Atlas official website. Transcriptome analysis was performed as implemented in the edgeR package to explore whether POLR3G was up-regulated in TCC tissues compared to normal bladder tissues. The expression of POLR3G in bladder cancer cell line T24 and human uroepithelial cell line SV-HUC-1 were detected via quantitative real time polymerase chain reaction (qRT-PCR). Correlations between POLR3G expression and clinicopathological characteristics were analyzed using Mann-Whitney U test or Kruskal-Wallis H test. Clinicopathological characteristics associated with overall survival were explored using the Kaplan-Meier method and Cox regression analyses. Gene set enrichment analysis (GSEA) was performed to explore the associated gene sets enriched in different POLR3G expression phenotypes and the online tool Tumor IMmune Estimation Resource (TIMER) was used to explore the correlation between POLR3G expression and tumor immune infiltration in TCC. Results Transcriptome analysis showed that POLR3G was significantly up-regulated in TCC tissues compared to normal bladder tissues. Furthermore, qRT-PCR revealed high expression of POLR3G in T24 cells compared to SV-HUC-1 cells. Overall, POLR3G expression was associated with race, tumor status, tumor subtype, T classification, and pathological stage. Kaplan-Meier survival analysis revealed that higher POLR3G expression was associated with lower overall survival. The univariate Cox regression model revealed that age at diagnosis, pathological stage, and POLR3G expression were associated with prognosis of TCC patients. Further multivariate analyses identified these three clinicopathological characteristics as independent prognostic factors for overall survival. GSEA analysis showed that several gene sets associated with tumor development and metastasis, including TGF-β signaling, PI3K-AKT-mTOR signaling, and IL6-JAK-STAT3 signaling, were significantly enriched in POLR3G high expression phenotype. Immune infiltration analysis revealed that the expression of POLR3G was significantly correlated with infiltrating levels of immune cells, including CD8+ T cells, neutrophils, and dendritic cells; and the expression of POLR3G was also significantly correlated with the expression of immune checkpoint molecules, such as PD1, PD-L1, PD-L2, CTLA4, LAG3, HAVCR2, and TIGIT. Conclusions POLR3G was up-regulated in TCC and high POLR3G expression correlated with poor prognosis. POLR3G can potentially be used as a prognostic marker for TCC and might be of great value in predicting the response to immunotherapy.


2021 ◽  
Author(s):  
Sha Tian ◽  
Shang qing Wang ◽  
Piao Zheng ◽  
Xu Zhu ◽  
Huan Han ◽  
...  

Abstract Background: The FK506-binding protein 4 ( FKBP4 ), a tumor-related gene, plays a vital role in tumorigenesis and cancer progression. The study is aimed to clarify the effect of FKBP4 in lung adenocarcinoma (LUAD). Methods: Relying on The Cancer Genome Atlas (TCGA) cohort, the FKBP4 expression difference between LUAD tissues and non-tumor tissues was first detected, and verified with public tissue microarrays (TMAs), clinical LUAD specimen cohort and Gene Expression Omnibus (GEO) cohort. Then, logistic regression analysis and chi-square test were applied to detect the correlation between FKBP4 expression and clinicopathological parameters. Kaplan-Meier survival analysis and Cox regression model were utilized to evaluate the effect of FKBP4 expression on survival. Signaling pathways related to LUAD were obtained via employing Gene Set Enrichment Analysis (GSEA). Results: The FKBP4 expression level in LUAD samples was dramatically higher than that in non-tumor samples. High FKBP4 expression in LUAD is associated with gender, pathological stage, T classification, lymph node metastasis and distant metastasis. The Kaplan-Meier curve indicated a poor prognosis for LUAD patients with high FKBP4 expression. Multivariate analysis suggested that the high FKBP4 expression was a vital independent predictor of poor overall survival (OS). GSEA showed that a total of 15 signaling pathways were enriched in samples with high FKBP4 expression phenotype. Conclusions: FKBP4 may be an oncogene in LUAD, and is promised to become a prognostic indicator and therapeutic target for LUAD.


2020 ◽  
Author(s):  
Pengbo Deng ◽  
Rongrong Zhou ◽  
Jinghui Zhang ◽  
Jian An ◽  
Liming Cao

Abstract Background: Available evidence indicates that kinetochore-localized astrin/SPAG5-binding protein (KNSTRN) is an oncogene in skin carcinoma. This study aimed to evaluate the prognostic value of KNSTRN in lung adenocarcinoma (LUAD) underlying the Cancer Genome Atlas (TCGA) database. Methods: The relationship between clinicopathological features and KNSTRN was analyzed with the Wilcoxon signed-rank test and logistic regression. The clinicopathological characteristics associated with overall survival (OS) were evaluated using Cox regression and the Kaplan–Meier method. Gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and single-sample GSEA (ssGSEA) were performed using TCGA data.Results: The KNSTRN expression level was found to be significantly higher in LUAD tissue than in normal lung tissue. Also, it correlated significantly with advanced clinicopathological characteristics. The Kaplan–Meier survival curve revealed a significant relationship of high expression of KNSTRN with poor OS in patients with LUAD. The multivariate Cox regression hazard model demonstrated the KNSTRN expression level as an independent prognostic factor for patients with LUAD. GO and GSEA analyses indicated the involvement of KNSTRN in cell cycle checkpoints, DNA replication, and G2-M checkpoint M phase. Based on ssGSEA analysis, KNSTRN had a positive relationship with Th2 cells and CD56dim natural killer cells. The KNSTRN expression levels in several types of immune cells were significantly different.Conclusion: The findings suggested that the increased expression level of KNSTRN was significantly associated with the progression of LUAD and could also serve as a novel prognostic biomarker for patients with LUAD.


2021 ◽  
Author(s):  
Jun Du ◽  
Jinguo Wang

Abstract Background: The expression and molecular mechanism of cysteine rich transmembrane module containing 1 (CYSTM1) in human tumor cells remains unclear. The aim of this study was to determine whether CYSTM1 could be used as a potential prognostic biomarker for hepatocellular carcinoma (HCC).Methods: We first demonstrated the relationship between CYSTM1 expression and HCC in various public databases. Secondly, Kaplan–Meier analysis and Cox proportional hazard regression model were performed to evaluate the relationship between the expression of CYSTM1 and the survival of HCC patients which data was downloaded in the cancer genome atlas (TCGA) database. Finally, we used the expression data of CYSTM1 in TCGA database to predict CYSTM1-related signaling pathways through bioinformatics analysis.Results: The expression level of CYSTM1 in HCC tissues was significantly correlated with T stage (p = 0.039). In addition, Kaplan–Meier analysis showed that the expression of CYSTM1 was significantly associated with poor prognosis in patients with early-stage HCC (p = 0.003). Multivariate analysis indicated that CYSTM1 is a potential predictor of poor prognosis in HCC patients (p = 0.036). The results of biosynthesis analysis demonstrated that the data set of CYSTM1 high expression was mainly enriched in neurodegeneration and oxidative phosphorylation pathways.Conclusion: CYSTM1 is an effective biomarker for the prognosis of patients with early-stage HCC and may play a key role in the occurrence and progression of HCC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang-Jie Wu ◽  
Ai-Tao Nai ◽  
Gui-Cheng He ◽  
Fei Xiao ◽  
Zhi-Min Li ◽  
...  

Abstract Background Dihydropyrimidinase like 2 (DPYSL2) has been linked to tumor metastasis. However, the function of DPSY2L in lung adenocarcinoma (LUAD) is yet to be explored. Methods Herein, we assessed DPYSL2 expression in various tumor types via online databases such as Oncomine and Tumor Immune Estimation Resource (TIMER). Further, we verified the low protein and mRNA expressions of DPYSL2 in LUAD via the ULCAN, The TCGA and GEPIA databases. We applied the ROC curve to examine the role of DPYSL2 in diagnosis. The prognostic significance of DPYSL2 was established through the Kaplan–Meier plotter and the Cox analyses (univariate and multivariate). TIMER was used to explore DPYSL2 expression and its connection to immune infiltrated cells. Through Gene Set Enrichment Analysis, the possible mechanism of DPYSL2 in LUAD was investigated. Results In this study, database analysis revealed lower DPYSL2 expression in LUAD than in normal tissues. The ROC curve suggested that expression of DPYSL2 had high diagnostic efficiency in LUAD. The DPYSL2 expression had an association with the survival time of LUAD patients in the Kaplan–Meier plotter and the Cox analyses. The results from TIMER depicted a markedly positive correlation of DPYSL2 expression with immune cells infiltrated in LUAD, such as macrophages, dendritic cells, CD4+ T cells, and neutrophils. Additionally, many gene markers for the immune system had similar positive correlations in the TIMER analysis. In Gene Set Enrichment Analysis, six immune-related signaling pathways were associated with DPYSL2. Conclusions In summary, DPYSL2 is a novel biomarker with diagnostic and prognostic potential for LUAD as well as an immunotherapy target. Highlights Expression of DPYSL2 was considerably lower in LUAD than in normal tissues. Investigation of multiple databases showed a high diagnostic value of DPYSL2 in LUAD. DPYSL2 can independently predict the LUAD outcomes. Immune-related mechanisms may be potential ways for DPYSL2 to play a role in LUAD.


2020 ◽  
Vol 9 (11) ◽  
pp. 3693
Author(s):  
Ching-Fu Weng ◽  
Chi-Jung Huang ◽  
Mei-Hsuan Wu ◽  
Henry Hsin-Chung Lee ◽  
Thai-Yen Ling

Introduction: Coxsackievirus/adenovirus receptors (CARs) and desmoglein-2 (DSG2) are similar molecules to adenovirus-based vectors in the cell membrane. They have been found to be associated with lung epithelial cell tumorigenesis and can be useful markers in predicting survival outcome in lung adenocarcinoma (LUAD). Methods: A gene ontology enrichment analysis disclosed that DSG2 was highly correlated with CAR. Survival analysis was then performed on 262 samples from the Cancer Genome Atlas, forming “Stage 1A” or “Stage 1B”. We therefore analyzed a tissue microarray (TMA) comprised of 108 lung samples and an immunohistochemical assay. Computer counting software was used to calculate the H-score of the immune intensity. Cox regression and Kaplan–Meier analyses were used to determine the prognostic value. Results: CAR and DSG2 genes are highly co-expressed in early stage LUAD and associated with significantly poorer survival (p = 0.0046). TMA also showed that CAR/DSG2 expressions were altered in lung cancer tissue. CAR in the TMA was correlated with proliferation, apoptosis, and epithelial–mesenchymal transition (EMT), while DSG2 was associated with proliferation only. The Kaplan–Meier survival analysis revealed that CAR, DSG2, or a co-expression of CAR/DSG2 was associated with poorer overall survival. Conclusions: The co-expression of CAR/DSG2 predicted a worse overall survival in LUAD. CAR combined with DSG2 expression can predict prognosis.


Sign in / Sign up

Export Citation Format

Share Document