scholarly journals The Stability of a Two-Axis Gimbal System for the Camera

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nguyen Cong Danh

Gimbal or an inertial stabilization platform (ISP) is used to stabilize the line of sight of an object or device that is tracking another object (LOS) with stationary or moving targets or targets moving forward. It can achieve precision when there is isolation between the tracker and the gimbal base. Studying the 2-axis tilt angle to create gimbal stability, especially in a camera, is a compelling subject for the automation field, as it is controlled by modern controllers. This paper presents a two-axis gimbal loop in which the LOS rate is stable, and I proceed to examine the stability of the system to get a better overview of the system properties. Through examining the stability of the system, I can choose from modern control methods to control them. The stability of the system used from the two analysis methods I present below gives me a visual view from the results achieved. The simulation is performed in MATLAB.

Author(s):  
Muhammad Hamza Shahbaz ◽  
Arslan Ahmed Amin

: Because of the consistently expanding energy request, the introduction of a decentralized micro-grid based on energy resources will soon be the most exciting development in the power system. Micro-grids, which are mainly based on inverters, are becoming more popular as they can handle different forms of renewable energy effectively. However, one of the most challenging areas of research is their control. In the last few years, many control strategies have been developed. In this review, different control methods have been discussed that apply to the micro-grid system. Furthermore, the comparative analysis of classical and modern control strategies is also considered. This survey guides the new researchers about all available control strategies and room for improvement towards the optimal solution of the micro-grid control techniques. It also identifies several research gaps and future trends therein as well as provides a solution to manage problems in MGs. The strategies are then compared based on their applicability to different control requirements.


2014 ◽  
Vol 608-609 ◽  
pp. 19-22
Author(s):  
Ping Xu ◽  
Jian Gang Yi

Hydraulic descaling system is the key device to ensure the surface quality of billet. However, traditional control methods lead to the stability problem in hydraulic descaling system. To solve the problem, the construction of the hydraulic descaling computer control system is studied, the working principle of the system is analyzed, and the high pressure water bench of hydraulic descaling is designed. Based on it, the corresponding computer control software is developed. The application shows that the designed system is stable in practice, which is helpful for enterprise production.


1988 ◽  
Vol 55 (4) ◽  
pp. 975-980 ◽  
Author(s):  
H. Koguchi ◽  
M. Okada ◽  
K. Tamura

This paper reports on the instability for the meniscus of a thin film of a very viscous liquid between two tilted plates, which are separated at a constant speed with a tilt angle in the normal direction of the plates. The disturbances on the meniscus moving with movement of the plates are examined experimentally and theoretically. The disturbances are started when the velocity of movement of the plates exceeds a critical one. The wavelength of the disturbances is measured by using a VTR. The instability of the meniscus is studied theoretically using the linearized perturbation method. A simple and complete analytical solution yields both a stability criterion and the wave number for a linear thickness geometry. These results compared with experiments for the instability show the validity of the stability criterion and the best agreement is obtained with the wave number of maximum amplification.


Author(s):  
Gao Ming-Zhou ◽  
Chen Xin-Yi ◽  
Han Rong ◽  
Yao Jian-Yong

To suppress airfoil flutter, a lot of control methods have been proposed, such as classical control methods and optimal control methods. However, these methods did not consider the influence of actuator faults and control delay. This paper proposes a new finite-time H∞ adaptive fault-tolerant flutter controller by radial basis function neural network technology and adaptive fault-tolerant control method, taking into account actuator faults, control delay, modeling uncertainties, and external disturbances. The theoretic section of this paper is about airfoil flutter dynamic modeling and adaptive fault-tolerant controller design. Lyapunov function and linear matrix inequality are employed to prove the stability of the proposed control method of this paper. The numeral simulation section further proves the effectiveness and robustness of the proposed control algorithm of this paper.


Author(s):  
Shuo Zhang ◽  
YangQuan Chen ◽  
Yongguang Yu

In this paper, the literature of fractional-order neural networks is categorized and discussed, which includes a general introduction and overview of fractional-order neural networks. Various application areas of fractional-order neural networks have been found or used, and will be surveyed and summarized such as neuroscience, computational science, control and optimization. Recent trends in dynamics of fractional-order neural networks are presented and discussed. The results, especially the stability analysis of fractional-order neural networks, are reviewed and different analysis methods are compared. Furthermore, the challenges and conclusions of fractional-order neural networks are given.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 463 ◽  
Author(s):  
Xiaohuan Wang ◽  
Hongyang Qing ◽  
Peng Huang ◽  
Chunjiang Zhang

The island microgrid is composed of a large number of inverters and various types of power equipment, and the interaction between inverters with different control methods may cause system instability, which will cause the power equipment to malfunction. Therefore, effective methods for analyzing the stability of the microgrid system have become particularly important. Generally, impedance modeling methods are used to analyze the stability of power electronic converter systems. In this paper, the impedance models of a PQ-controlled inverter and droop-controlled inverter are established in d-q frame. In view of the difference of output characteristics between the two control methods, the island microgrid is equivalent to a double closed-loop system. The impedance model of the parallel system is derived and the open loop transfer function of the system is extracted. Based on the generalized Nyquist criterion (GNC), the stability of parallel system working in island microgrid mode is analyzed using this proposed impedance model. The simulation and experiment results are presented to verify the analysis.


2020 ◽  
Vol 30 (11) ◽  
pp. 2050218
Author(s):  
Li-Ming Cai

To reduce the global burden of mosquito-borne diseases, e.g. dengue, malaria, the need to develop new control methods is to be highlighted. The sterile insect technique (SIT) and various genetic modification strategies, have a potential to contribute to a reversal of the current alarming disease trends. In our previous work, the ordinary differential equation (ODE) models with different releasing sterile mosquito strategies are investigated. However, in reality, implementing SIT and the releasing processes of sterile mosquitos are very complex. In particular, the delay phenomena always occur. To achieve suppression of wild mosquito populations, in this paper, we reassess the effect of the delayed releasing of sterile mosquitos on the suppression of interactive mosquito populations. We extend the previous ODE models to the delayed releasing models in two different ways of releasing sterile mosquitos, where both constant and exponentially distributed delays are considered, respectively. By applying the theory and methods of delay differential equations, the effect of time delays on the stability of equilibria in the system is rigorously analyzed. Some sustained oscillation phenomena via Hopf bifurcations in the system are observed. Numerical examples demonstrate rich dynamical features of the proposed models. Based on the obtained results, we also suggest some new releasing strategies for sterile mosquito populations.


2017 ◽  
Vol 71 (11) ◽  
pp. 2538-2548 ◽  
Author(s):  
Qian Wang ◽  
Xiaomei Wu ◽  
Lingcong Chen ◽  
Zheng Yang ◽  
Zheng Fang

Currently, spectral analysis methods used in the classification of plastics have limitations that do not apply to opaque plastics or the stability of experimental results is not strong. In this paper, X-ray absorption spectroscopy (XAS) has been applied to classify plastics due to its strong penetrability and stability. Fifteen kinds of plastics are selected as specimens. X-ray, which is excited by a voltage of 60 kV, penetrated these specimens. The spectral data acquired by CdTe X-ray detector are processed by principal component analysis (PCA) and other data analysis methods. Then the back propagation neural networks (BPNN) algorithm is used to classify the processed data. The average recognition rate reached 96.95% and classification results of all types of plastic results were analyzed in detail. It indicates that XAS has the potential to classify plastics and that XAS can be used in some fields such as plastic waste sorting and recycling. At the same time, the technology of XAS, in the future, can also be used to classify more substances.


Sign in / Sign up

Export Citation Format

Share Document