scholarly journals Numerical Simulation of Characteristics of Wind Field at Bridge Sites in Flat and Gorge Terrains under the Thunderstorm Downburst

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Peng Hu ◽  
Yilin Chen ◽  
Yan Han ◽  
Fei Zhang ◽  
Yongjian Tang

To investigate the effects of thunderstorm downburst on the characteristics of wind field at bridge sites in flat and gorge terrains, firstly, numerical simulation of wind fields in the flat terrain under the thunderstorm downburst was conducted through the SST k-ω turbulence model, combined with the impinging jet technology. After verification of the reliability of the numerical model, settings, and methods, the characteristics of wind field over a long-span bridge site in a gorge terrain under the thunderstorm downburst were investigated and the distributions of wind speed and wind attack angle in the flat and gorge terrains were compared. The results show that, under the effects of the thunderstorm downburst, the wind speeds are relatively maximum at the midspan point of the girder in the flat terrain. Besides, the farther away from the midspan point, the smaller the wind speeds, which is opposite to the case in the gorge terrain. The wind speeds at each typical monitoring point are basically the same in the two terrains, before the thunderstorm downburst hits the bridge girder. Later the wind speeds at each point in the gorge terrain are much higher than those in the flat terrain. Most wind attack angles are negative at the monitoring points in the flat terrain, but the farther away they are from the midspan point, the greater the wind attack angles will be. However, the wind attack angles at the monitoring points in the gorge terrain are generally larger than those in the flat terrain, and they gradually turn to be positive farther away from the midspan point. In the flat terrain, both wind speeds and wind attack angles (or their absolute values) at the girder are large within about t = 75∼130 s, indicating that the thunderstorm downburst may exert significant effects on the bridge. However, in the gorge terrain, due to the large wind speeds and wind attack angles (or their absolute values) at the girder after t = 75 s, full attention needs to be paid to the effects of the thunderstorm downburst during this period.

2013 ◽  
Vol 361-363 ◽  
pp. 1094-1100
Author(s):  
Jian Guo ◽  
Wei Chang Gan ◽  
Ding Yu Jiang ◽  
Bing Nan Sun ◽  
Wei Peng

In the research on calculation of interaction of wind and structure, the key to the question is wind field numerical simulation. This paper introduces a practical wind field simulation method of long-span Bridge. The main bridge of Jintang Bridge was analyzed as engineering example, which is a cross-sea cable stayed bridge in Zhoushan of Zhejiang Province , and the linear filter method was applied to calculate along-wind and vertical wind field on main girder, MATLAB program also was adopted to simulate wind field of long-span Bridge. The results show that simulated spectrum is in better agreement with the target spectrum, which verifies validity of the method and correctness of the program.


2018 ◽  
Vol 177 ◽  
pp. 260-274 ◽  
Author(s):  
Yan Han ◽  
Lian Shen ◽  
Guoji Xu ◽  
C.S. Cai ◽  
Peng Hu ◽  
...  

2019 ◽  
Vol 19 (12) ◽  
pp. 1950149
Author(s):  
Shenghong Huang ◽  
Qiusheng Li ◽  
Man Liu ◽  
Fubin Chen ◽  
Shun Liu

Wind-driven rain (WDR) and its interactions with structures is an important research subject in wind engineering. As bridge spans are becoming longer and longer, the effects of WDR on long-span bridges should be well understood. Therefore, this paper presents a comprehensive numerical simulation study of WDR on a full-scale long-span bridge under extreme conditions. A validation study shows that the predictions of WDR on a bridge section model agree with experimental results, validating the applicability of the WDR simulation approach based on the Eulerian multiphase model. Furthermore, a detailed numerical simulation of WDR on a long-span bridge, North Bridge of Xiazhang Cross-sea Bridge is conducted. The simulation results indicate that although the loads induced by raindrops on the bridge surfaces are very small as compared to the wind loads, extreme rain intensity may occur on some windward surfaces of the bridge. The adopted numerical methods and rain loading models are validated to be an effective tool for WDR simulation for bridges and the results presented in this paper provide useful information for the water-erosion proof design of future long-span bridges.


2020 ◽  
Author(s):  
Xinghong Cheng

<p>We carried out 14 days of Car MAX-DOAS experiments on the 6th Ring Rd of Beijing in January, September and October, 2014. The tropospheric vertical column densities (VCD) of NO<sub>2</sub> are retrieved and used to estimate the emissions of NO<sub>x</sub>. The offline LAPS-WRF-CMAQ model system is used to simulate wind fields by assimilation of observational data and calculate the NO<sub>2</sub> to NO<sub>x</sub> concentration ratios. The NO<sub>X</sub> emissions in Beijing for different seasons derived from Car MAX-DOAS measurements are compared with the multi-resolution emission inventory in China for 2012 (MEIC 2012), and impacts of wind field on estimated emissions and its uncertainties are also investigated. Results show that the NO<sub>2</sub> VCD is higher in January than other two months and it is typically larger at the southern parts of the 6th Ring Road than the northern parts of it. Wind field has obvious impacts on the spatial distribution of NO<sub>2</sub> VCD, and the mean NO<sub>2</sub> VCD with south wind at most sampling points along the 6th Ring Rd is higher than north wind. The journey-to-journey variation pattern of estimated NO<sub>X</sub> emissions rates (E<sub>NOX</sub>) is consistent with that of the NO<sub>2</sub> VCD, and E<sub>NOX </sub>is mainly determined by the NO2 VCD. In addition, the journey-to-journey E<sub>NOX</sub> in the same month is different and it is affected by wind speed, the ratio of NO<sub>2</sub> and NOx concentration and the decay rate of NO<sub>X</sub> from the emission sources to measured positions under different meteorological condition. The E<sub>NOX</sub> ranges between 6.46×10<sup>25</sup> and 50.05×10<sup>25</sup> molec s<sup>-1</sup>. The averaged E<sub>NOX</sub> during every journey in January, September and October are respectively 35.87×10<sup>25</sup>, 20.34×10<sup>25</sup>, 8.96×10<sup>25</sup> molec s<sup>-1</sup>. The estimated E<sub>NOX</sub> after removing the simulated error of wind speed and observed deviation of NO<sub>2</sub> VCD are found to be mostly closer to the MEIC 2012, but sometimes E<sub>NOX </sub>is lower or higher and it indicates that the MEIC 2012 might be overestimate or underestimate the true emissions. The estimated E<sub>NOX</sub> on January 27 and September 19 are obviously higher than other journeys in the same month because the mean NO<sub>2</sub> VCD and Leighton ratio during these two periods are larger, and corresponding wind speeds are smaller. Additionally, because south wind may affect the spatial distribution of mean NO<sub>2</sub> VCD in Beijing which is downwind of south-central regions of Hebei province with high source emission rates, the uncertainty of the estimated E<sub>NOX</sub> with south wind will be increased.</p>


2016 ◽  
Vol 20 (10) ◽  
pp. 1599-1611 ◽  
Author(s):  
Peng Hu ◽  
Yongle Li ◽  
Yan Han ◽  
CS Cai ◽  
Guoji Xu

Characteristics of wind fields over the gorge or valley terrains are becoming more and more important to the structural wind engineering. However, the studies on this topic are very limited. To obtain the fundamental characteristics information about the wind fields over a typical gorge terrain, a V-shaped simplified gorge, which was abstracted from some real deep-cutting gorges where long-span bridges usually straddle, was introduced in the present wind tunnel studies. Then, the wind characteristics including the mean wind speed, turbulence intensity, integral length scale, and the wind power spectrum over the simplified gorge were studied in a simulated atmospheric boundary layer. Furthermore, the effects of the oncoming wind field type and oncoming wind direction on these wind characteristics were also investigated. The results show that compared with the oncoming wind, the wind speeds at the gorge center become larger, but the turbulence intensities and the longitudinal integral length scales become smaller. Generally, the wind fields over the gorge terrain can be approximately divided into two layers, that is, the gorge inner layer and the gorge outer layer. The different oncoming wind field types have remarkable effects on the mean wind speed ratios near the ground. When the angle between the oncoming wind and the axis of the gorge is in a certain small range, such as smaller than 10°, the wind fields are very close to those associated with the wind direction of 0°. However, when the angle is in a larger range, such as larger than 20°, the wind fields in the gorge will significantly change. The research conclusions can provide some references for civil engineering practices regarding the characteristics of wind fields over the real gorge terrains.


2019 ◽  
Author(s):  
Shih-Ho Chao ◽  
Venkatesh Kaka ◽  
Missagh Shamshiri

2019 ◽  
Vol 9 (24) ◽  
pp. 5506
Author(s):  
Zidong Xu ◽  
Hao Wang ◽  
Han Zhang ◽  
Kaiyong Zhao ◽  
Hui Gao ◽  
...  

Numerical simulation of the turbulent wind field on long-span bridges is an important task in structural buffeting analysis when it comes to the system non-linearity. As for non-stationary extreme wind events, some efforts have been paid to update the classic spectral representation method (SRM) and the fast Fourier transform (FFT) has been introduced to improve the computational efficiency. Here, the non-negative matrix factorization-based FFT-aided SRM has been updated to generate not only the horizontal non-stationary turbulent wind field, but also the vertical one. Specifically, the evolutionary power spectral density (EPSD) is estimated to characterize the non-stationary feature of the field-measured wind data during Typhoon Wipha at the Runyang Suspension Bridge (RSB) site. The coherence function considering the phase angles is utilized to generate the turbulent wind fields for towers. The simulation accuracy is validated by comparing the simulated and target auto-/cross-correlation functions. Results show that the updated method performs well in generating the non-stationary turbulent wind field. The obtained wind fields will provide the research basis for analyzing the non-stationary buffeting behavior of the RSB and other wind-sensitive structures in adjacent regions.


Sign in / Sign up

Export Citation Format

Share Document