scholarly journals Bismuth Pelvic X-Ray Shielding Reduces Radiation Dose Exposure in Pediatric Radiography

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Bow Wang ◽  
Chien-Yi Ting ◽  
Cheng-Shih Lai ◽  
Yi-Shan Tsai

Background. Radiation using conventional X-ray is associated with exposure of radiosensitive organs and typically requires the use of protection. This study is aimed at evaluating the use of bismuth shielding for radiation protection in pediatric pelvic radiography. The effects of the anteroposterior and lateral bismuth shielding were verified by direct measurements at the anatomical position of the gonads. Methods. Radiation doses were measured using optically stimulated luminescence dosimeters (OSLD) and CIRS ATOM Dosimetry Verification Phantoms. Gonad radiographs were acquired using different shields of varying material (lead, bismuth) and thickness and were compared with radiographs obtained without shielding to examine the effects on image quality and optimal reduction of radiation dose. All images were evaluated separately by three pediatric orthopedic practitioners. Results. Results showed that conventional lead gonadal shielding reduces radiation doses by 67.45%, whereas dose reduction using one layer of bismuth shielding is 76.38%. The use of two layers of bismuth shielding reduces the dose by 84.01%. Using three and four layers of bismuth shielding reduces dose by 97.33% and 99.34%, respectively. Progressively lower radiation doses can be achieved by increasing the number of bismuth layers. Images obtained using both one and two layers of bismuth shielding provided adequate diagnostic information, but those obtained using three or four layers of bismuth shielding were inadequate for diagnosis. Conclusions. Bismuth shielding reduces radiation dose exposure providing appropriate protection for children undergoing pelvic radiography. The bismuth shielding material is lighter than lead, making pediatric patients more comfortable and less apt to move, thereby avoiding repeat radiography.

2014 ◽  
Vol 880 ◽  
pp. 53-56 ◽  
Author(s):  
Sergei Stuchebrov ◽  
Andrey Batranin ◽  
Dan Verigin ◽  
Yelena Lukyanenko ◽  
Maria Siniagina ◽  
...  

Two setups for X-ray visualization of objects interior structure were designed and assembled in TPU. These radiographic systems are based on linear gas-discharge and GaAs semiconductor detectors. During investigation of biological object control of radiation doses has a high priority. In this report radiation dose calculations in X-ray visualization are presented. These calculation also includes dose calculations of sinograms which are used for reconstruction of tomography slices.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Richard G. Kavanagh ◽  
John O’Grady ◽  
Brian W. Carey ◽  
Patrick D. McLaughlin ◽  
Siobhan B. O’Neill ◽  
...  

Magnetic resonance imaging (MRI) is the mainstay method for the radiological imaging of the small bowel in patients with inflammatory bowel disease without the use of ionizing radiation. There are circumstances where imaging using ionizing radiation is required, particularly in the acute setting. This usually takes the form of computed tomography (CT). There has been a significant increase in the utilization of computed tomography (CT) for patients with Crohn’s disease as patients are frequently diagnosed at a relatively young age and require repeated imaging. Between seven and eleven percent of patients with IBD are exposed to high cumulative effective radiation doses (CEDs) (>35–75 mSv), mostly patients with Crohn’s disease (Newnham E 2007, Levi Z 2009, Hou JK 2014, Estay C 2015). This is primarily due to the more widespread and repeated use of CT, which accounts for 77% of radiation dose exposure amongst patients with Crohn’s disease (Desmond et al., 2008). Reports of the projected cancer risks from the increasing CT use (Berrington et al., 2007) have led to increased patient awareness regarding the potential health risks from ionizing radiation (Coakley et al., 2011). Our responsibilities as physicians caring for these patients include education regarding radiation risk and, when an investigation that utilizes ionizing radiation is required, to keep radiation doses as low as reasonably achievable: the “ALARA” principle. Recent advances in CT technology have facilitated substantial radiation dose reductions in many clinical settings, and several studies have demonstrated significantly decreased radiation doses in Crohn’s disease patients while maintaining diagnostic image quality. However, there is a balance to be struck between reducing radiation exposure and maintaining satisfactory image quality; if radiation dose is reduced excessively, the resulting CT images can be of poor quality and may be nondiagnostic. In this paper, we summarize the available evidence related to imaging of Crohn’s disease, radiation exposure, and risk, and we report recent advances in low-dose CT technology that have particular relevance.


Author(s):  
M Keshtkar ◽  
V Saba ◽  
M A Mosleh-Shirazi

The increased use of computed tomography (CT) and its high radiation dose have led to great concerns about its potential for radiation induced cancer risks. Breast is a radiosensitive tissue based on tissue weighting factors assigned by the International Commission on Radiological Protection (ICRP). Moreover, the dose is maximal on the surface of the patient. Therefore, strategies should be taken to reduce radiation dose to the breast. The aim of this review is to introduce methods used for reducing radiation dose to breast in thoracic CT and review related performed studies. The literature indicates that bismuth shielding increases image noise and CT numbers as well as introducing streak artifacts. Tube current modulation (TCM) technique and iterative reconstruction algorithms can provide some levels of dose reduction to radiosensitive organs and superior image quality without the disadvantages of bismuth shielding. However, they are not available on all CT scanners, especially in low-income countries. Such centers may have to continue using bismuth shields to reduce the dose until these superior techniques become available at lower costs in all CT scanners. Furthermore, design and manufacture of new shields with the lower impact on image quality are desirable.


Author(s):  
Yong Li ◽  
Bingsheng Huang ◽  
Jun Cao ◽  
Tianqi Fang ◽  
Guoqing Liu ◽  
...  

Abstract The radiation doses absorbed by major organs of males and females were studied from three types of dental X-ray devices. The absorbed doses from cone-beam computed tomography (CBCT), panoramic and intraoral X-ray machines were in the range of 0.23–1314.85 μGy, and were observed to be high in organs and tissues located in or adjacent to the irradiated area, there were discrepancies in organ doses between male and female. Thyroid, salivary gland, eye lens and brain were the organs that received higher absorbed doses. The organ absorbed doses were considerably lower than the diagnostic reference level for dental radiography in China. The calculated effective radiation doses for males and females were 56.63, 8.15, 2.56 μSv and 55.18, 8.99, 2.39 μSv, respectively, when using CBCT, the panoramic X-ray machine and intraoral X-ray machine. The effective radiation dose caused by CBCT was much higher than those of panoramic and intraoral X-ray machines.


2021 ◽  
Vol 8 (5) ◽  
pp. 315-321
Author(s):  
Chinenye Evangeline Eyisi-Enuka ◽  
Christian Chukwuemeka Nzotta ◽  
Ebbi Donald Robinson ◽  
Akintayo Daniel Omojola ◽  
Thomas Adejoh ◽  
...  

Objective: Exposure to ionizing radiation during radiographic examination is associated with some biological effects. The study was aimed to determine the amount of scatter radiation to the breast during lumbosacral x-ray examination. Materials and Methods: The study was a prospective, cross-sectional study carried out among 60 women referred for Lumbosacral spine radiography from September 2019 to December 2019. Ethical approval was granted by the hospital ethical committee. A single-phase mobile X-ray unit was used to dispense the radiation while a thermoluminescent dosimeter (TLD) chip was used to measure the radiation dose. The TLD chip was attached to the peri-areolar region of the left breast and held in place by a transparent adhesive tape. The TLD was carefully enclosed in a black polythene sachet before and after the investigation to shield it from background radiation. After the investigation the TLD,s were sent to the Centre for Energy Research and Training (CERT) for reading and annealing.  Results: The mean age and BMI of participants were 55.32±12.35years and 29.70±7.09kg/m2 respectively. The cumulative mean (±SD) ESD to the breast was 3.87±0.87mGy. The highest scatter radiation dose was observed in the age group 60-69 years. Pearson’s correlation showed a week correlation between age and ESD. Conclusion: The study showed that there were scatter radiations to the breast during lumbosacral X-Ray investigations which was was lowest among the age group 50-59years. No significant difference was seen between AP and lateral positions. The cancer risk was 1 in 6,000 indicating that there might be needed to shield the breast while performing lumbosacral X-ray.


2020 ◽  
Vol 55 (1) ◽  
pp. 55-60 ◽  
Author(s):  
F.M. Aldhafeeri

To evaluate the level of knowledge and awareness regarding radiation doses from common radiological examinations among 100 radiographers working in different hospitals across Saudi Arabia, a questionnaire comprising 21 multiple-choice questions was electronically distributed to 180 radiographers working in medical imaging departments in various hospitals in Saudi Arabia. Participants were instructed to estimate the radiation dose administrated to patients during common radiological procedures. I received 100 survey responses. Only 13% (n = 13) of the participants correctly identified the effective radiation dose from 1-view chest and abdominal X-ray, whereas 7% (n = 7) correctly identified the dose from 2-view chest X-ray. Approximately half of the participants underestimated the patient dose from head and abdominal computed tomography and 2-view unilateral mammogram. Moreover, 17–26% correctly estimated the patient’s risk of fatal cancer from common radiological procedures. These results revealed a remarkably low level of knowledge among radiographers regarding radiation dose and risks. The vast majority of radiographers underestimated radiation doses and associated risks from common radiological examinations. The number of bachelor’s programs in Saudi Arabia has been extremely limited in the past decade. Most radiographers hold a diploma degree, which does not include any courses on radiation dose or protection. Continuous professional development in radiation safety is required to practice radiography.


2021 ◽  
pp. 20210399
Author(s):  
Mamoru Takenaka ◽  
Makoto Hosono ◽  
Shiro Hayashi ◽  
Tsutomu Nishida ◽  
Masatoshi Kudo

Although many interventions involving radiation exposure have been replaced to endoscopic procedure in the gastrointestinal and hepatobiliary fields, there remains no alternative for enteroscopy and endoscopic retrograde cholangiopancreatography (ERCP), which requires the use of radiation. In this review, we discuss the radiation doses and protective measures of endoscopic procedures, especially for ERCP. For the patient radiation dose, the average dose area product for diagnostic ERCP was 14–26 Gy.cm², while it increased to as high as 67–89 Gy.cm² for therapeutic ERCP. The corresponding entrance skin doses for diagnostic and therapeutic ERCP were 90 and 250 mGy, respectively. The mean effective doses were 3– 6 mSv for diagnostic ERCP and 12–20 mSv for therapeutic ERCP. For the occupational radiation dose, the typical doses were 94 μGy and 75 μGy for the eye and neck, respectively. However, with an over-couch-type X-ray unit, the eye and neck doses reached as high as 550 and 450 μGy, with maximal doses of up to 2.8 and 2.4 mGy/procedure, respectively. A protective lead shield was effective for an over couch X-ray tube unit. It lowered scattered radiation by up to 89.1% in a phantom study. In actual measurements, the radiation exposure of the endoscopist closest to the unit was reduced to approximately 12%. In conclusion, there is a clear need for raising awareness among medical personnel involved endoscopic procedures to minimise radiation risks to both the patients and staff.


Dose-Response ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 155932581877732 ◽  
Author(s):  
Noriko Shimura ◽  
Shuji Kojima

We herein attempted to identify the lowest radiation dose causing molecular changes in the living body. We investigated the effects of radiation in human cells, animals, and humans. DNA double-strand breaks (DSBs) formed in cells at γ- or X-ray irradiation doses between 1 mGy and 0.5 Gy; however, the extent of DSB formation differed depending on the cell species. The formation of micronuclei (MNs) and nucleoplasmic bridges (NPBs) was noted at radiation doses between 0.1 and 0.2 Gy. Stress-responsive genes were upregulated by lower radiation doses than those that induced DNA DSBs or MN and NPBs. These γ- or X-ray radiation doses ranged between approximately 10 and 50 mGy. In animals, chromosomal aberrations were detected between 50 mGy and 0.1 Gy of low linear energy transfer radiation, 0.1 Gy of metal ion beams, and 9 mGy of fast neutrons. In humans, DNA damage has been observed in children who underwent computed tomography scans with an estimated blood radiation dose as low as 0.15 mGy shortly after examination. The frequencies of chromosomal translocations were lower in residents of high background areas than in those of control areas. In humans, systemic adaptive responses may have been prominently expressed at these radiation doses.


2020 ◽  
Vol 10 (24) ◽  
pp. 8941
Author(s):  
Domenico Albano ◽  
Alessandro Loria ◽  
Cristiana Fanciullo ◽  
Alberto Bruno ◽  
Carmelo Messina ◽  
...  

Background: Radiation doses and capability of EOS, conventional radiography (CR), and computed tomography (CT) to detect and measure enchondromas in a dedicated five-year-old anthropomorphic phantom were compared. Methods: To simulate enchondromas, minced pieces of chicken bone and cartilage were packed in conventional kitchen plastic foil to create ovoidal/rounded masses and randomly hung on the phantom. The phantom was imaged five times with CR, CT, and EOS, each time changing the number and position of inserts. All images were reviewed by a senior radiologist and a radiology resident. Results: EOS and CR detected all inserts in 4/5 cases (80%), while in one case 1/17 inserts was not seen. Excellent agreement of EOS with CR (88% reproducibility; bias = 14 mm; repeatability coefficient (CoR) 2.9; 95% CI from −2.8 to 3.1 mm; p = 0.5) and CT (81% reproducibility; bias = 15 mm; CoR 5.2; 95% CI from −5.5 to 5.2 mm; p = 0.7) was found. EOS showed 71% interobserver reproducibility (CoR 7.2; bias = 0.6 mm; 95% CI from −6.6 to 7.8 mm; p = 0.25). The EOS-Fast radiation dose was also significantly lower than the median radiation dose of CR (644.7 (599.4–651.97) mGy•cm2, p = 0.004). Conclusions: Low-dose EOS has the same capability as CR to detect and measure enchondroma-like inserts on a phantom and may be considered to monitor patients with multiple enchondromas.


2019 ◽  
Vol 1299 ◽  
pp. 012103
Author(s):  
J. A. Achuka ◽  
M. R. Usikalu ◽  
M. A. Aweda ◽  
C. A. Onumejor ◽  
I. O. Babarimisa

Sign in / Sign up

Export Citation Format

Share Document