scholarly journals A Pinning Actor-Critic Structure-Based Algorithm for Sizing Complex-Shaped Depth Profiles in MFL Inspection with High Degree of Freedom

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhenning Wu ◽  
Yiming Deng ◽  
Lixing Wang

One of the most efficient nondestructive methods for pipeline in-line inspection is magnetic flux leakage (MFL) inspection. Estimating the size of the defect from MFL signal is one of the key problems of MFL inspection. As the inspection signal is usually contaminated by noise, sizing the defect is an ill-posed inverse problem, especially when sizing the depth as a complex shape. An actor-critic structure-based algorithm is proposed in this paper for sizing complex depth profiles. By learning with more information from the depth profile without knowing the corresponding MFL signal, the algorithm proposed saves computational costs and is robust. A pinning strategy is embedded in the reconstruction process, which highly reduces the dimension of action space. The pinning actor-critic structure (PACS) helps to make the reward for critic network more efficient when reconstructing the depth profiles with high degrees of freedom. A nonlinear FEM model is used to test the effectiveness of algorithm proposed under 20 dB noise. The results show that the algorithm reconstructs the depth profile of defects with good accuracy and is robust against noise.

2020 ◽  
Author(s):  
Lucian Chan ◽  
Garrett Morris ◽  
Geoffrey Hutchison

The calculation of the entropy of flexible molecules can be challenging, since the number of possible conformers grows exponentially with molecule size and many low-energy conformers may be thermally accessible. Different methods have been proposed to approximate the contribution of conformational entropy to the molecular standard entropy, including performing thermochemistry calculations with all possible stable conformations, and developing empirical corrections from experimental data. We have performed conformer sampling on over 120,000 small molecules generating some 12 million conformers, to develop models to predict conformational entropy across a wide range of molecules. Using insight into the nature of conformational disorder, our cross-validated physically-motivated statistical model can outperform common machine learning and deep learning methods, with a mean absolute error ≈4.8 J/mol•K, or under 0.4 kcal/mol at 300 K. Beyond predicting molecular entropies and free energies, the model implies a high degree of correlation between torsions in most molecules, often as- sumed to be independent. While individual dihedral rotations may have low energetic barriers, the shape and chemical functionality of most molecules necessarily correlate their torsional degrees of freedom, and hence restrict the number of low-energy conformations immensely. Our simple models capture these correlations, and advance our understanding of small molecule conformational entropy.


2017 ◽  
Vol 897 ◽  
pp. 287-290 ◽  
Author(s):  
Matthias Kocher ◽  
Michael Niebauer ◽  
Mathias Rommel ◽  
Volker Haeublein ◽  
Anton J. Bauer

Point contact current voltage (PCIV) measurements were performed on 4H-SiC samples, both for n- an p-doped epitaxial layers as well as samples with rather shallow doping profiles realized by N- or Al-implantation in a range from 1016 cm-3 to 1019 cm-3. Surface preparation and measurement parameters were investigated in order to determine their influence on the measured resistance profiles. Furthermore depth profile measurements were performed on both an epitaxial layer as well as on implanted samples. These depth profiles could be measured reproducibly and showed good agreement with expected profiles for Al-implanted samples as well as for epitaxial layer whereas for N-implanted samples deviations between measured and expected profiles could be observed. It could be proven that PCIV profiling technique is a promising method for characterizing doped profiles in 4H-SiC, especially on Al-implanted samples.


2014 ◽  
Vol 926-930 ◽  
pp. 2054-2057
Author(s):  
Jun Hui He

This paper proposed customers to participate typology based on three dimensions, which are the customers’ autonomy in the process, the nature of the firm‐customer collaboration, and the stage of the innovation process. Then proposed customers to participate in the type of open innovation framework. Through the static comparative and dynamic evolution simulation found: customers tend to be open to participate in the development of new products pre innovation, the tendency to begin to choose the low participation of degrees of freedom, and ultimately tend to opt for a high degree of freedom to participate.


2021 ◽  
Author(s):  
Peng Guan ◽  
Ruchuan Shi ◽  
Yang Yang ◽  
Peng Qin ◽  
Tao Han

2016 ◽  
Vol 62 (4) ◽  
pp. 187-200
Author(s):  
K. Żółtowski ◽  
P. Kalitowski

AbstractThis article deals with the problem of determining the resistance of end-plate connections. A nonlinear FEM model of the joint was constructed in order to predict its carrying capacity. A standard code procedure was done as well. The analyses have been done to assess atypical end-plate joints designed and constructed as a part of roof structures.


2021 ◽  
Author(s):  
Lucian Chan ◽  
Garrett Morris ◽  
Geoffrey Hutchison

The calculation of the entropy of flexible molecules can be challenging, since the number of possible conformers grows exponentially with molecule size and many low-energy conformers may be thermally accessible. Different methods have been proposed to approximate the contribution of conformational entropy to the molecular standard entropy, including performing thermochemistry calculations with all possible stable conformations, and developing empirical corrections from experimental data. We have performed conformer sampling on over 120,000 small molecules generating some 12 million conformers, to develop models to predict conformational entropy across a wide range of molecules. Using insight into the nature of conformational disorder, our cross-validated physically-motivated statistical model can outperform common machine learning and deep learning methods, with a mean absolute error ≈4.8 J/mol•K, or under 0.4 kcal/mol at 300 K. Beyond predicting molecular entropies and free energies, the model implies a high degree of correlation between torsions in most molecules, often as- sumed to be independent. While individual dihedral rotations may have low energetic barriers, the shape and chemical functionality of most molecules necessarily correlate their torsional degrees of freedom, and hence restrict the number of low-energy conformations immensely. Our simple models capture these correlations, and advance our understanding of small molecule conformational entropy.


1986 ◽  
Vol 32 (112) ◽  
pp. 366-370 ◽  
Author(s):  
E.W. Wolff ◽  
C.S.M. Doake

AbstractTwo situations are studied in relation to the flow law of polar ice. In each case, models are used with a flow-law exponent of one, and with the more traditional exponent of three. The horizontal velocity profile at Devon Island, Arctic Canada, is better fitted byn= 1; for the vertical velocity profile,n= 3 gives a better fit, but both model profiles fall well within experimental error. For the Camp Century age–depth profile, onlyn= 1 gives an acceptable fit when temperature is allowed for. The large discrepancy between isothermal and non-isothermal models forn= 3 shows the importance of allowing for temperature in studies of ice-sheet properties.


1989 ◽  
Vol 166 ◽  
Author(s):  
Robert C. Bowman ◽  
John F. Knudsen ◽  
R. Gregory Downing

ABSTRACTThe nondestructive neutron depth profile (NDP) technique has been used to measure boron (10B) distributions in Si and Hg0.7Cd0.3 Te after multiple energy ion implants. The NDP results are compared with simulations generated by TRIM and SUPREM computer codes. The influence of SiO2 films on the boron profiles was examined and the effects of thermal anneals are also described.


2004 ◽  
Vol 16 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Hiroe Hashiguchi ◽  
◽  
Suguru Arimoto ◽  
Ryuta Ozawa

To enhance robot hand dexterity, it is said that the robot should be designed to have a redundant number of degrees of freedom. In redundant robotic systems, inverse kinematics from task description space to joint space becomes ill-posed, making it difficult to determine joint motions. To avoid this ill-posedness, most proposed methods introduce an additional input term calculated from an intentionally introduced artificial index of performance. We propose a 4 DOF redundant handwriting robot using novel simple control to solve the problem of ill-posedness based on sensory feedback. We demonstrate the effectiveness of proposed control in computer simulation of closed-loop dynamics with the constraint that the robot’s endpoint be always on a two-dimensional plane.


Sign in / Sign up

Export Citation Format

Share Document