scholarly journals Pragmatic Applications and Universality of DNA Barcoding for Substantial Organisms at Species Level: A Review to Explore a Way Forward

2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Sarfraz Ahmed ◽  
Muhammad Ibrahim ◽  
Chanin Nantasenamat ◽  
Muhammad Farrukh Nisar ◽  
Aijaz Ahmad Malik ◽  
...  

DNA barcodes are regarded as hereditary succession codes that serve as a recognition marker to address several queries relating to the identification, classification, community ecology, and evolution of certain functional traits in organisms. The mitochondrial cytochrome c oxidase 1 (CO1) gene as a DNA barcode is highly efficient for discriminating vertebrate and invertebrate animal species. Similarly, different specific markers are used for other organisms, including ribulose bisphosphate carboxylase (rbcL), maturase kinase (matK), transfer RNA-H and photosystem II D1-ApbsArabidopsis thaliana (trnH-psbA), and internal transcribed spacer (ITS) for plant species; 16S ribosomal RNA (16S rRNA), elongation factor Tu gene (Tuf gene), and chaperonin for bacterial strains; and nuclear ITS for fungal strains. Nevertheless, the taxon coverage of reference sequences is far from complete for genus or species-level identification. Applying the next-generation sequencing approach to the parallel acquisition of DNA barcode sequences could greatly expand the potential for library preparation or accurate identification in biodiversity research. Overall, this review articulates on the DNA barcoding technology as applied to different organisms, its universality, applicability, and innovative approach to handling DNA-based species identification.

2021 ◽  
Vol 908 (1) ◽  
pp. 012030
Author(s):  
M V Protopopova ◽  
N A Shvetsova ◽  
V V Pavlichenko

Abstract The methods of biological species identification using nucleotide sequences of short genome regions (DNA barcoding) are actively developed. The universal DNA barcode for plants remains to be discovered, and one of the leading candidates is the plastid gene of the large subunit of ribulose-bisphosphate carboxylase gene (rbcL). In our study, we estimated the part of rbcL gene as a possible marker for molecular identification of Rhaponticum carthamoides (Willd.) Iljin. Due to its officinal properties, the species is susceptible to uncontrolled and illegal harvesting from natural populations. Today, the species needs to be protected and therefore is included into the Red Data Books of the Russian Federation and certain regions. The study was carried out using plants from the natural populations sampled from the Khamar-Daban Ridge (South Siberia) and considering now as Rh. carthamoides var. chamarense (Peschkova) O S Zhirova. It was shown that rbcL gene can be used to identify Rh. carthamoides at least from the populations of the Khamar-Daban Ridge using a fragment of the maximum length or its 3’ region. Apparently, the 5’ region of the gene (rbcLa) most often used as DNA barcode for plants may be of lesser importance for Rh. carthamoides. The rbcL gene sequences can be also used for the development of approaches for Rh. carthamoides identification in the medicinal preparations and products containing dried tissues to prevent their falsification and illegal harvesting of this species. The combination of rbcL gene with additional markers seems to be highly desirable to create effective DNA barcodes for Rhaponticum species.


Author(s):  
Qian Tang ◽  
Qi Luo ◽  
Qian Duan ◽  
Lei Deng ◽  
Renyi Zhang

Nowadays, the global fish consumption continues to rise along with the continuous growth of the population, which has led to the dilemma of overfishing of fishery resources. Especially high-value fish that are overfished are often replaced by other fish. Therefore, the accurate identification of fish products in the market is a problem worthy of attention. In this study, full-DNA barcoding (FDB) and mini-DNA barcoding (MDB) used to detect the fraud of fish products in Guiyang, Guizhou province in China. The molecular identification results showed that 39 of the 191 samples were not consistent with the labels. The mislabelling of fish products for fresh, frozen, cooked and canned were 11.70%, 20.00%, 34.09% and 50.00%, respectively. The average kimura 2 parameter distances of MDB within species and genera were 0.27% and 5.41%, respectively; while average distances of FDB were 0.17% within species and 6.17% within genera. In this study, commercial fraud is noticeable, most of the high-priced fish were replaced of low-priced fish with a similar feature. Our study indicated that DNA barcoding is a valid tool for the identification of fish products and that it allows an idea of conservation and monitoring efforts, while confirming the MDB as a reliable tool for fish products.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1410
Author(s):  
Inkyu Park ◽  
Sungyu Yang ◽  
Goya Choi ◽  
Byeong Cheol Moon ◽  
Jun-Ho Song

To guarantee the safety and efficacy of herbal medicines, accurate identification and quality evaluation are crucial. The ripe dried seeds of Cuscuta australis R.Br. and C. chinensis Lam. are known as Cuscutae Semen (CS) and are widely consumed in Northeast Asia; however, the seeds of other species can be misidentified as CS owing to morphological similarities, leading to misuse. In this report, we propose a multilateral strategy combining microscopic techniques with statistical analysis and DNA barcoding using a genus-specific primer to facilitate the identification and authentication of CS. Morphology-based identification using microscopy revealed that the useful diagnostic characteristics included general shape, embryo exudation, hairiness, and testa ornamentation, which were used to develop an effective identification key. In addition, we conducted DNA barcoding-based identification to ensure accurate authentication. A novel DNA barcode primer was produced from the chloroplast rbcL gene by comparative analysis using Cuscuta chloroplast genome sequences, which allowed four Cuscuta species and adulterants to be discriminated completely. Therefore, this investigation overcame the limitations of universal DNA barcodes for Cuscuta species with high variability. We believe that this integrated approach will enable CS to be differentiated from other species, thereby improving its quality control and product safety in medicinal markets.


2019 ◽  
Vol 47 (2) ◽  
pp. 333-342
Author(s):  
Abu Faiz Md Aslam ◽  
Sharmin Sultana ◽  
Sumita Rani Das ◽  
Abdul Jabber Howlader

Tribolium confusum and Tribolium castaneum (Coleoptera: Tenebrionidae) are two very confusing pest species while identification is done on the basis of morphology only. Such pests are discovered in stored grain as immature stages, which further complicates the identification process. Accurate identification of these pests is urgently required for integrated pest management. In this research, DNA barcoding was used to identify these pests accurately at any life stage. A 658 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene was analyzed. DNA barcode dataset of T. confusum (GeneBank Acc. no. MK120453.1) and T. castaneum (Acc. no. MK411585.1) were constructed. The nucleotide composition reveals that average AT contents (59.9%) were higher than the GC contents (38.6%). Phylogenetic analysis by maximum likelihood method showed that both the species were originated from a common major clade. About 17.13% nucleotide differences were noted between the CO1 sequences by multiple sequence alignment. The interspecies nucleotide genetic distance (0.200) was calculated using Kimura 2 parameter. Haplotype analysis showed high genetic diversity (112 mutaional steps) among them. Bangladesh J. Zool. 47(2): 333-342, 2019


2021 ◽  
Vol 9 ◽  
Author(s):  
Parvin Aghayeva ◽  
Salvatore Cozzolino ◽  
Donata Cafasso ◽  
Valida Ali-zade ◽  
Silvia Fineschi ◽  
...  

DNA barcoding has rapidly become a useful complementary tool in floristic investigations particularly for identifying specimens that lack diagnostic characters. Here, we assess the capability of three DNA barcode markers (chloroplast rpoB, accD and nuclear ITS) for correct species assignment in a floristic survey on the Caucasus. We focused on two herbal groups with potential for ornamental applications, namely orchids and asterids. On these two plant groups, we tested whether our selection of barcode markers allows identification of the “barcoding gap” in sequence identity and to distinguish between monophyletic species when employing distance-based methods. All markers successfully amplified most specimens, but we found that the rate of species-level resolution amongst selected markers largely varied in the two plant groups. Overall, for both lineages, plastid markers had a species-level assignment success rate lower than the nuclear ITS marker. The latter confirmed, in orchids, both the existence of a barcoding gap and that all accessions of the same species clustered together in monophyletic groups. Further, it also allowed the detection of a phylogeographic signal.The ITS marker resulted in its being the best performing barcode for asterids; however, none of the three tested markers showed high discriminatory ability. Even if ITS were revealed as the most promising plant barcode marker, we argue that the ability of this barcode for species assignment is strongly dependent on the evolutionary history of the investigated plant lineage.


Author(s):  
Takeru Nakazato

DNA barcoding technology has become employed widely for biodiversity and molecular biology researchers to identify species and analyze their phylogeny. Recently, DNA metabarcoding and environmental DNA (eDNA) technology have developed by expanding the concept of DNA barcoding. These techniques analyze the diversity and quantity of organisms within an environment by detecting biogenic DNA in water and soil. It is particularly popular for monitoring fish species living in rivers and lakes (Takahara et al. 2012). BOLD Systems (Barcode of Life Database systems, Ratnasingham and Hebert 2007) is a database for DNA barcoding, archiving 8.5 million of barcodes (as of August 2020) along with the voucher specimen, from which the DNA barcode sequence is derived, including taxonomy, collected country, and museum vouchered as metadata (e.g. https://www.boldsystems.org/index.php/Public_RecordView?processid=TRIBS054-16). Also, many barcoding data are submitted to GenBank (Sayers et al. 2020), which is a database for DNA sequences managed by NCBI (National Center for Biotechnology Information, US). The number of the records of DNA barcodes, i.e. COI (cytochrome c oxidase I) gene for animal, has grown significantly (Porter and Hajibabaei 2018). BOLD imports DNA barcoding data from GenBank, and lots of DNA barcoding data in GenBank are also assigned BOLD IDs. However, we have to refer to both BOLD and GenBank data when performing DNA barcoding. I have previously investigated the registration of DNA barcoding data in GenBank, especially the association with BOLD, using insects and flowering plants as examples (Nakazato 2019). Here, I surveyed the number of species covered by BOLD and GenBank. I used fish data as an example because eDNA research is particularly focused on fish. I downloaded all GenBank files for vertebrates from NCBI FTP (File Transfer Protocol) sites (as of November 2019). Of the GenBank fish entries, 86,958 (7.3%) were assigned BOLD identifiers (IDs). The NCBI taxonomy database has registrations for 39,127 species of fish, and 20,987 scientific names at the species level (i.e., excluding names that included sp., cf. or aff.). GenBank entries with BOLD IDs covered 11,784 species (30.1%) and 8,665 species-level names (41.3%). I also obtained whole "specimens and sequences combined data" for fish from BOLD systems (as of November 2019). In the BOLD, there are 273,426 entries that are registered as fish. Of these entries, 211,589 BOLD entries were assigned GenBank IDs, i.e. with values in “genbank_accession” column, and 121,748 entries were imported from GenBank, i.e. with "Mined from GenBank, NCBI" description in "institution_storing" column. The BOLD data covered 18,952 fish species and 15,063 species-level names, but 35,500 entries were assigned no species-level names and 22,123 entries were not even filled with family-level names. At the species level, 8,067 names co-occurred in GenBank and BOLD, with 6,997 BOLD-specific names and 599 GenBank-specific names. GenBank has 425,732 fish entries with voucher IDs, of which 340,386 were not assigned a BOLD ID. Of these 340,386 entries, 43,872 entries are registrations for COI genes, which could be candidates for DNA barcodes. These candidates include 4,201 species that are not included in BOLD, thus adding these data will enable us to identify 19,863 fish to the species level. For researchers, it would be very useful if both BOLD and GenBank DNA barcoding data could be searched in one place. For this purpose, it is necessary to integrate data from the two databases. A lot of biodiversity data are recorded based on the Darwin Core standard while DNA sequencing data are sometimes integrated or cross-linked by RDF (Resource Description Framework). It may not be technically difficult to integrate these data, but the species data referenced differ from the EoL (The Encyclopedia of Life) for BOLD and the NCBI taxonomy for GenBank, and the differences in taxonomic systems make it difficult to match by scientific name description. GenBank has fields for the latitude and longitude of the specimens sampled, and Porter and Hajibabaei 2018 argue that this information should be enhanced. However, this information may be better described in the specimen and occurrence databases. The integration of barcoding data with the specimen and occurrence data will solve these problems. Most importantly, it will save the researcher from having to register the same information in multiple databases. In the field of biodiversity, only DNA barcode sequences may have been focused on and used as gene sequences. The museomics community regards museum-preserved specimens as rich resources for DNA studies because their biodiversity information can accompany the extraction and analysis of their DNA (Nakazato 2018). GenBank is useful for biodiversity studies due to its low rate of mislabelling (Leray et al. 2019). In the future, we will be working with a variety of DNA, including genomes from museum specimens as well as DNA barcoding. This will require more integrated use of biodiversity information and DNA sequence data. This integration is also of interest to molecular biologists and bioinformaticians.


2021 ◽  
Vol 11 (2) ◽  
pp. 134
Author(s):  
Marlin Bernadet Taariwuan ◽  
Jantje Ngangi ◽  
Yermia Mokosuli ◽  
Sukmarayu Gedoan

(Article History: Received June 28, 2021; Revised August 30, 2021; Accepted Sept 3, 2021) ABSTRAKDalugha (Cyrtospera merkusii (Hassk.)Schott) merupakan tanaman endemik Sulawesi Utara yang digunakan sebagai pangan alternatif (penganti beras). Penelitian ini bertujuan untuk membandingkan spesies daluga di Kepulauan Talaud dan Minahasa Selatan menggunakan DNA barcode gen rbcL (ribulose 1,5 bisphosphate carboxylase large). Perbandingan barcode DNA yang dilakukan pada empat sampel yang berbeda lokasi tersebut keduanya menghasilkan tingkat kesamaan 100% (identik). Dengan demikian, tidak ada variasi intra spesies yang ditemukan dari semua sampel yang ada. Selanjutnya, kemiripan sampel-sampel ini telusuri kemiripannya dengan kerabat terdekat yang tercatat di GenBank menggunakan BLAST (Basic Local Alignment Search Tool).  Tanaman dalugha dalam penelitian ini memiliki kemiripan 99,82% dengan tumbuhan Anaphyllopsis americana (AM905753.1), dan kemiripannya 99,63% dengan Cyrtosperma macrotum (AM905750.1), Lasimorpha senegalensis (AM905755.1), Pycnospatha arietina (AM905751.1), dan Podolasia stipitata (AM905752.1). Belum ada rekor sekuens DNA gen rbcL dari spesies ini yang dibisa dibandingkan di GenBank.Kata Kunci: Dalugha; DNA barcoding; gen rbcL ABSTRACTDalugha (Cyrtospera merkusii (Hassk.) Schott) is an endemic plant in North Sulawesi that is used as alternative food (substitute for rice). This research aimed to compare the DNA barcode of dalugha in Talaud Islands and in South Minahasa using rbcL (ribulose 1,5 bisphosphate carboxylase large) gene. The DNA barcoding comparison of all four samples in both area resulted in 100% similarity (identical). Therefore, there is no intraspecific variation found in all samples. Furthermore, the similarity of these samples were conducted with BLAST (Basic Local Alignment Search Tool) to compare with its closest relatives in GenBank. The closest relatives of this plant, based on similarity information, are 99.82% with Anaphyllopsis americana (AM905753.1) and all 99.63% with Cyrtosperma macrotum (AM905750.1), Lasimorpha senegalensis (AM905755.1), Pycnospatha arietina (AM905751.1), and Podolasia stipitata (AM905752.1).  There is no record yet of rbcL gene sequence of C. merkusii in GenBank for comparison.Keywords: Dalugha; DNA barcoding; rbcL gene


Botany ◽  
2019 ◽  
Vol 97 (9) ◽  
pp. 503-512 ◽  
Author(s):  
Deniz Aygoren Uluer ◽  
Rahma Alshamrani

Aesculus L. is a small genus of horticulturally important trees and shrubs, comprising 13–19 species. Frequent hybridization among species, particularly in cultivation, has contributed to taxonomic confusion and difficulties in the identification of plants. In this study, we evaluated three widely employed plant DNA barcode loci, matK, and the entire ITS region (ITS1+5.8S+ITS2) as well as subunit ITS2 for 50 individuals representing 13 species of Aesculus, excluding only A. wangii (=A. assamica). In contrast to the plastid matK region, both the ITS and ITS2 loci displayed low levels of species discrimination, especially in our “first hit” BLASTn searches. We also presented the phylogeny of Aesculus based on matK and the entire ITS region, with additional matK and ITS sequences from GenBank. Our results show that Aesculus chinensis, A. flava, A. glabra, A. pavia, and A. sylvatica are probably not monophyletic. Furthermore, with the widest taxon coverage until now, the current study highlights the importance of sampling multiple individuals, not only for DNA barcoding, but also for phylogenetic studies.


Genome ◽  
2016 ◽  
Vol 59 (9) ◽  
pp. 641-660 ◽  
Author(s):  
Daniel H. Janzen ◽  
Winnie Hallwachs

The 37-year ongoing inventory of the estimated 15 000 species of Lepidoptera living in the 125 000 terrestrial hectares of Area de Conservacion Guanacaste, northwestern Costa Rica, has DNA barcode documented 11 000+ species, and the simultaneous inventory of at least 6000+ species of wild-caught caterpillars, plus 2700+ species of parasitoids. The inventory began with Victorian methodologies and species-level perceptions, but it was transformed in 2004 by the full application of DNA barcoding for specimen identification and species discovery. This tropical inventory of an extraordinarily species-rich and complex multidimensional trophic web has relied upon the sequencing services provided by the Canadian Centre for DNA Barcoding, and the informatics support from BOLD, the Barcode of Life Data Systems, major tools developed by the Centre for Biodiversity Genomics at the Biodiversity Institute of Ontario, and available to all through couriers and the internet. As biodiversity information flows from these many thousands of undescribed and often look-alike species through their transformations to usable product, we see that DNA barcoding, firmly married to our centuries-old morphology-, ecology-, microgeography-, and behavior-based ways of taxonomizing the wild world, has made possible what was impossible before 2004. We can now work with all the species that we find, as recognizable species-level units of biology. In this essay, we touch on some of the details of the mechanics of actually using DNA barcoding in an inventory.


Botany ◽  
2008 ◽  
Vol 86 (7) ◽  
pp. 773-789 ◽  
Author(s):  
Gary W. Saunders

The field of DNA barcoding is working towards generating a genetic system for the quick and accurate identification of eukaryotic species. For the more systematic minded, however, DNA barcoding offers a new approach towards screening and uniting large numbers of biological specimens in genetic groups as a first step towards assigning them to species and genera in an approach best termed “molecular-assisted alpha taxonomy”. This approach is particularly amenable in organisms with simple morphologies, a propensity for convergence, extensive phenotypic plasticity, and life histories with an alternation of heteromorphic generations. It is hard to imagine a group of organisms better defined by all of these traits than the marine macroalgae. In an effort to assess the utility of the DNA barcode (COI-5′) for testing the current concepts of biodiversity of marine macroalgae in Canada, a study to assess species diversity in the red algal family, Dumontiaceae, was initiated. Through this work I confirm the presence in Canadian waters of Dilsea californica (J. Agardh) Kuntze, Dilsea integra (Kjellman) Rosenvinge, and Neodilsea borealis (I.A. Abbott) Lindstrom of the Dilsea–Neodilsea complex, and Weeksia coccinea (Harvey) Lindstrom for the genus Weeksia . However, our work has uncovered two additional species of the former complex, Dilsea lindstromiae Saunders sp. nov. and Dilsea pygmaea (Setchell) Setchell, and an additional species of the latter, Weeksia reticulata Setchell, effectively doubling representation of these foliose dumontiacean genera in Canadian waters.


Sign in / Sign up

Export Citation Format

Share Document