scholarly journals Task Offloading and Scheduling Strategy for Intelligent Prosthesis in Mobile Edge Computing Environment

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Ping Qi

Traditional intent recognition algorithms of intelligent prosthesis often use deep learning technology. However, deep learning’s high accuracy comes at the expense of high computational and energy consumption requirements. Mobile edge computing is a viable solution to meet the high computation and real-time execution requirements of deep learning algorithm on mobile device. In this paper, we consider the computation offloading problem of multiple heterogeneous edge servers in intelligent prosthesis scenario. Firstly, we present the problem definition and the detail design of MEC-based task offloading model for deep neural network. Then, considering the mobility of amputees, the mobility-aware energy consumption model and latency model are proposed. By deploying the deep learning-based motion intent recognition algorithm on intelligent prosthesis in a real-world MEC environment, the effectiveness of the task offloading and scheduling strategy is demonstrated. The experimental results show that the proposed algorithms can always find the optimal task offloading and scheduling decision.

Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

AbstractWith the developing of Internet of Things (IoT) and mobile edge computing (MEC), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


2021 ◽  
Vol 13 (5) ◽  
pp. 128
Author(s):  
Jun Liu ◽  
Xiaohui Lian ◽  
Chang Liu

In Space–Air–Ground Integrated Networks (SAGIN), computation offloading technology is a new way to improve the processing efficiency of node tasks and improve the limitation of computing storage resources. To solve the problem of large delay and energy consumption cost of task computation offloading, which caused by the complex and variable network offloading environment and a large amount of offloading tasks, a computation offloading decision scheme based on Markov and Deep Q Networks (DQN) is proposed. First, we select the optimal offloading network based on the characteristics of the movement of the task offloading process in the network. Then, the task offloading process is transformed into a Markov state transition process to build a model of the computational offloading decision process. Finally, the delay and energy consumption weights are introduced into the DQN algorithm to update the computation offloading decision process, and the optimal offloading decision under the low cost is achieved according to the task attributes. The simulation results show that compared with the traditional Lyapunov-based offloading decision scheme and the classical Q-learning algorithm, the delay and energy consumption are respectively reduced by 68.33% and 11.21%, under equal weights when the offloading task volume exceeds 500 Mbit. Moreover, compared with offloading to edge nodes or backbone nodes of the network alone, the proposed mixed offloading model can satisfy more than 100 task requests with low energy consumption and low delay. It can be seen that the computation offloading decision proposed in this paper can effectively reduce the delay and energy consumption during the task computation offloading in the Space–Air–Ground Integrated Network environment, and can select the optimal offloading sites to execute the tasks according to the characteristics of the task itself.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1446 ◽  
Author(s):  
Liang Huang ◽  
Xu Feng ◽  
Luxin Zhang ◽  
Liping Qian ◽  
Yuan Wu

This paper studies mobile edge computing (MEC) networks where multiple wireless devices (WDs) offload their computation tasks to multiple edge servers and one cloud server. Considering different real-time computation tasks at different WDs, every task is decided to be processed locally at its WD or to be offloaded to and processed at one of the edge servers or the cloud server. In this paper, we investigate low-complexity computation offloading policies to guarantee quality of service of the MEC network and to minimize WDs’ energy consumption. Specifically, both a linear programing relaxation-based (LR-based) algorithm and a distributed deep learning-based offloading (DDLO) algorithm are independently studied for MEC networks. We further propose a heterogeneous DDLO to achieve better convergence performance than DDLO. Extensive numerical results show that the DDLO algorithms guarantee better performance than the LR-based algorithm. Furthermore, the DDLO algorithm generates an offloading decision in less than 1 millisecond, which is several orders faster than the LR-based algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dali Zhu ◽  
Ting Li ◽  
Haitao Liu ◽  
Jiyan Sun ◽  
Liru Geng ◽  
...  

Mobile edge computing (MEC) has been envisaged as one of the most promising technologies in the fifth generation (5G) mobile networks. It allows mobile devices to offload their computation-demanding and latency-critical tasks to the resource-rich MEC servers. Accordingly, MEC can significantly improve the latency performance and reduce energy consumption for mobile devices. Nonetheless, privacy leakage may occur during the task offloading process. Most existing works ignored these issues or just investigated the system-level solution for MEC. Privacy-aware and user-level task offloading optimization problems receive much less attention. In order to tackle these challenges, a privacy-preserving and device-managed task offloading scheme is proposed in this paper for MEC. This scheme can achieve near-optimal latency and energy performance while protecting the location privacy and usage pattern privacy of users. Firstly, we formulate the joint optimization problem of task offloading and privacy preservation as a semiparametric contextual multi-armed bandit (MAB) problem, which has a relaxed reward model. Then, we propose a privacy-aware online task offloading (PAOTO) algorithm based on the transformed Thompson sampling (TS) architecture, through which we can (1) receive the best possible delay and energy consumption performance, (2) achieve the goal of preserving privacy, and (3) obtain an online device-managed task offloading policy without requiring any system-level information. Simulation results demonstrate that the proposed scheme outperforms the existing methods in terms of minimizing the system cost and preserving the privacy of users.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wenchen Zhou ◽  
Weiwei Fang ◽  
Yangyang Li ◽  
Bo Yuan ◽  
Yiming Li ◽  
...  

Mobile edge computing (MEC) provides cloud-computing services for mobile devices to offload intensive computation tasks to the physically proximal MEC servers. In this paper, we consider a multiserver system where a single mobile device asks for computation offloading to multiple nearby servers. We formulate this offloading problem as the joint optimization of computation task assignment and CPU frequency scaling, in order to minimize a tradeoff between task execution time and mobile energy consumption. The resulting optimization problem is combinatorial in essence, and the optimal solution generally can only be obtained by exhaustive search with extremely high complexity. Leveraging the Markov approximation technique, we propose a light-weight algorithm that can provably converge to a bounded near-optimal solution. The simulation results show that the proposed algorithm is able to generate near-optimal solutions and outperform other benchmark algorithms.


2019 ◽  
Vol 6 (5) ◽  
pp. 7635-7647 ◽  
Author(s):  
Ke Zhang ◽  
Yongxu Zhu ◽  
Supeng Leng ◽  
Yejun He ◽  
Sabita Maharjan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document