scholarly journals Investigation on Mechanical and Wear Behaviors of LM6 Aluminium Alloy-Based Hybrid Metal Matrix Composites Using Stir Casting Process

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
P. Gnaneswaran ◽  
V. Hariharan ◽  
Samson Jerold Samuel Chelladurai ◽  
G. Rajeshkumar ◽  
S. Gnanasekaran ◽  
...  

In this investigation, aluminium-silicon-based alloy (LM6) with the addition of (0, 2.5, 5, and 10%) copper-coated short steel fiber and 5% boron carbide (B4C) element-strengthened composites was fabricated by the stir casting method. Mechanical properties and tribological behaviors of LM6-based hybrid composites were investigated, and microstructures of different castings were examined by an image analyzer. The test was conducted at different loads (10, 20, 30, and 40 N) and different sliding spaces (500, 1000, 1500, and 2000 m), respectively. The results revealed that the sample loaded with 10% of reinforcement recorded the highest tensile strength of 231 MPa. On the other hand, the hardness value increased from 71 to 144 BHN, when 15% of reinforcement was added to the sample. It was also noted that 10% copper-coated steel fiber improved wear resistance up to 50% when compared to LM6. A field emission scanning electron microscope was employed to observe the morphology of the worn surfaces of composites at different sliding distances and load conditions. The hybrid composite revealed that the combination of both short steel fibers and reinforcement of ceramic particles enhanced the mechanical properties, obtaining superior wear resistance.

The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


2019 ◽  
Vol 130 ◽  
pp. 01005
Author(s):  
Cindy Retno Putri ◽  
Anne Zulfia Syahrial ◽  
Salahuddin Yunus ◽  
Budi Wahyu Utomo

The goal of this research is to improve the mechanical properties such as strength, hardness and wear resistance for automotive application such as brake shoe and bearings due to high cycle, load and impact during their usage. Therefore, another alloying element or reinforcement addition is necessary. In this work, the composites are made by ADC 12 (Al-Si aluminum alloy) as the matrix and reinforced with micro SiC through stir casting process and TiB is added various from (0.04, 0.06, 0.15, 0.3 and 0.5) wt.% that act as grain refiners and 5 wt.% of Mg is added to improve the wettability of the composites. The addition of TiB improves the mechanical properties because the grain becomes finer and uniform, and the addition of Mg makes the matrix and reinforce have better adhesion. The results obtained that the optimum composition was found by adding 0.15 wt.% of TiB with tensile strength improve from 98 MPa to 136.3 MPa, hardness from 35 to 53 HRB and wear rate reduced from 0.006 2 mm3 s−1 to 0.002 3 mm3 s−1 respectively.


Author(s):  
G. Sathishkumar ◽  
S.J. Irudayaraja ◽  
S. Sivaganesan ◽  
M. Thuyavan

Metal matrix composites are of great interest in industrial applications for its light weight with high specific strength, stiffness and heat resistance. The processing of MMCs by stir casting process is an effective way of manufacturing. In this paper the comparison of mechanical properties of Aluminium 7075 as a base metal and varying composition of fly ash by 3 and 6 wt.% SiC and 7% fly ash as reinforcement is carried out. Scanning electron microscope was used to confirm the presence of SiC and fly ash. The composites with 6% SiC was found to have maximum hardness whereas composites of 6% and 5 % fly ash were found to have minimum hardness. The mechanical properties such as wear resistance were studied. From the results, it has been finalized that the addition of 6% SiC was identified to show the least wear rate.


2015 ◽  
Vol 15 (4) ◽  
pp. 339-343 ◽  
Author(s):  
Bhargavi Rebba ◽  
N. Ramanaiah

AbstractThe results of an experimental investigation of the mechanical properties of boron carbide (B4C) and molybdenum disulphide (MoS2) reinforced aluminium alloy (AA2024) hybrid composite samples, processed by stir casting process are reported in this paper. Based on the previous studies, it was concluded that for 4% of weight of the B4C powders reinforced in AA2024 metal matrix have better mechanical properties like tensile strength and hardness than the base alloy. Also the 4% of MoS2 reinforced in AA2024 metal matrix exhibited good mechanical properties than the matrix metal. Hence an attempt has been made to further improve the properties of the composite using both B4C and MoS2 as reinforcement particles in the AA2024 matrix. in the present study hybrid composite specimen were developed varying the weight% of B4C and MoS2, viz., 1%+3%, 2%+2%, 3%+1% B4C and MoS2 respectively in the AA2024 matrix. The prepared samples were subjected to a series of mechanical tests like tensile and hardness tests. Further, SEM & XRD analyses were performed on the prepared samples to study the microstructure and to ensure the proper dispersion of the reinforced particles in the metal matrix.


2011 ◽  
Vol 462-463 ◽  
pp. 307-312 ◽  
Author(s):  
Mahamad Noor Wahab ◽  
Mariyam Jameelah Ghazali ◽  
Abdul Razak Daud

The effect of AlN addition in Al-Si alloy composites on the mechanical properties and dry wear behaviour were studied using pre-selected parameter conditions. In this work, high purity of AlN powders with different weight percentage of 5, 7 and 10 were used as reinforced materials for the composites. Morphology of the reinforced composite indicated that both silicon grains and inter-metallic compounds were surrounded by the AlN particles. The presence of AlN in the Al-Si alloy showed a significant improvement in tensile properties in which 7wt% of AlN addition increased up to 25% compared to those of without any reinforcements. Fracture morphologies with small dimples, tear ridges and necking features indicated that ductile fractures had occurred on the Al-Si composites. At 25N load, alloys with 5wt% of AlN exhibited high wear resistances whereas at 70N, alloys with 10wt% of AlN showed a great improvement in wear resistance. SEM investigation also revealed that the presence of wear was also marked with prominent grooves, craters and scoring marks. Overall, alloys with 7wt% AlN addition possessed great improvement in hardness, tensile and wear resistance properties.


The developments in the area of aerospace, advancing activities in aircraft field and automotive industry emerges the exploit of new materials. In such applications, the role of Metal Matrix Composites (MMCs) is inevitable. In the proposed article, the fabrication of Al (6351) alloy reinforced with SiC and varying weight proportion of Boron Carbide (B4C) was done through stir casting process. The characterization of prepared composite materials is evaluated to ensure the homogeneous distribution of reinforced particulates in Al matrix. The existence of alloying elements and their mapping is done through EDS. Moreover, the enhancement of physical and mechanical behavior of the fabricated composites is also discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document