scholarly journals Marketing Resource Allocation Strategy Optimization Based on Dynamic Game Model

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yan Long ◽  
Hongshan Zhao

Game theory has become an important tool to study the competition between oligopolistic enterprises. After combing the existing literature, it is found that there is no research combining two-stage game and nonlinear dynamics to analyze the competition between enterprises for advertising. Therefore, this paper establishes a two-stage game model to discuss the effect of the degree of firms’ advertising input on their profits. And the complexity of the system is analyzed using nonlinear dynamics. This paper analyzes and studies the dynamic game for two types of application network models: data transmission model and transportation network model. Under the time-gap ALOHA protocol, the noncooperative behavior of the insiders in the dynamic data transmission stochastic game is examined as well as the cooperative behavior. In this paper, the existence of Nash equilibrium and its solution algorithm are proved in the noncooperative case, and the “subgame consistency” of the cooperative solution (Shapley value) is discussed in the cooperative case, and the cooperative solution satisfying the subgame consistency is obtained by constructing the “allocation compensation procedure.” The cooperative solution is obtained by constructing the “allocation compensation procedure” to satisfy the subgame consistency. In this paper, we propose to classify the packets transmitted by the source nodes, and by changing the strategy of the source nodes at the states with different kinds of packets, we find that the equilibrium payment of the insider increases in the noncooperative game with the addition of the “wait” strategy. In the transportation dynamic network model, the problem of passenger flow distribution and the selection of service parameters of transportation companies are also studied, and a two-stage game theoretical model is proposed to solve the equilibrium price and optimal parameters under Wardrop’s criterion.

Author(s):  
Jinmian Chen ◽  
Yukun Cheng ◽  
Zhiqi Xu

Cloud/fog computing resource pricing is a new paradigm in the blockchain mining scheme, as the participants would like to purchase the cloud/fog computing resource to speed up their mining processes. In this paper, we propose a novel two-stage game to study the optimal price-based cloud/fog computing resource management, in which the cloud/fog computing resource provider (CFP) is the leader, setting the resource price in Stage I, and the mining pools act as the followers to decide their demands of the resource in Stage II. Since mining pools are bounded rational in practice, we model the dynamic interactions among them by an evolutionary game in Stage II, in which each pool pursues its evolutionary stable demand based on the observed price, through continuous learning and adjustments. Backward induction method is applied to analyze the sub-game equilibrium in each stage. Specifically in Stage II, we first build a general study framework for the evolutionary game model, and then provide a detailed theoretical analysis for a two-pool case to characterize the conditions for the existence of different evolutionary stable solutions. Referring to the real world, we conduct a series of numerical experiments, whose results validate our theoretical findings for the case of two mining pools. Additionally, the impacts from the size of mining block, the unit transaction fee and the price of token on the decision makings of participants are also discussed.


2019 ◽  
Vol 34 (1) ◽  
pp. 506-517 ◽  
Author(s):  
Chenyu Wu ◽  
Wei Gu ◽  
Rui Bo ◽  
Ping Jiang ◽  
Zhi Wu ◽  
...  

2013 ◽  
Vol 64 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Zhongbao Zhou ◽  
Liang Sun ◽  
Wenyu Yang ◽  
Wenbin Liu ◽  
Chaoqun Ma

Author(s):  
Naresh Sammeta ◽  
Latha Parthiban

Recent healthcare systems are defined as highly complex and expensive. But it can be decreased with enhanced electronic health records (EHR) management, using blockchain technology. The healthcare sector in today’s world needs to address two major issues, namely data ownership and data security. Therefore, blockchain technology is employed to access and distribute the EHRs. With this motivation, this paper presents novel data ownership and secure medical data transmission model using optimal multiple key-based homomorphic encryption (MHE) with Hyperledger blockchain (OMHE-HBC). The presented OMHE-HBC model enables the patients to access their own data, provide permission to hospital authorities, revoke permission from hospital authorities, and permit emergency contacts. The proposed model involves the MHE technique to securely transmit the data to the cloud and prevent unauthorized access to it. Besides, the optimal key generation process in the MHE technique takes place using a hosted cuckoo optimization (HCO) algorithm. In addition, the proposed model enables sharing of EHRs by the use of multi-channel HBC, which makes use of one blockchain to save patient visits and another one for the medical institutions in recoding links that point to EHRs stored in external systems. A complete set of experiments were carried out in order to validate the performance of the suggested model, and the results were analyzed under many aspects. A comprehensive comparison of results analysis reveals that the suggested model outperforms the other techniques.


2018 ◽  
Vol 6 (1-2) ◽  
pp. 50-65 ◽  
Author(s):  
Rittwik Chatterjee ◽  
Srobonti Chattopadhyay ◽  
Tarun Kabiraj

Spillovers of R&D outcome affect the R&D decision of a firm. The present paper discusses the R&D incentives of a firm when the extent of R&D spillover is private information to each firm. We construct a two-stage game involving two firms when the firms first decide simultaneously whether to invest in R&D or not, then they compete in quantity. Assuming general distribution function of firm types we compare R&D incentives of firms under alternative scenarios based on different informational structures. The paper shows that while R&D spillovers reduce R&D incentives under complete information unambiguously, however, it can be larger under incomplete information. JEL Classification: D43, D82, L13, O31


Sign in / Sign up

Export Citation Format

Share Document