scholarly journals The Consensus of Different Fractional-Order Chaotic Multiagent Systems Using Adaptive Protocols

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Masoumeh Firouzjahi ◽  
Bashir Naderi ◽  
Yousef Edrisi Tabriz

This paper is concerned with the adaptive consensus problem of incommensurate chaotic fractional order multiagent systems. Firstly, we introduce fractional-order derivative in the sense of Caputo and the classical stability theorem of linear fractional order systems; also, algebraic graph theory and sufficient conditions are presented to ensure the consensus for fractional multiagent systems. Furthermore, adaptive protocols of each agent using local information are designed and a detailed analysis of the leader-following consensus is presented. Finally, some numerical simulation examples are also given to show the effectiveness of the proposed results.

2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Xuefeng Zhang ◽  
Yuqing Yan

This paper is devoted to the admissibility issue of singular fractional order systems with order α ∈ ( 0 , 1 ) based on complex variables. Firstly, with regard to admissibility, necessary and sufficient conditions are obtained by strict LMI in complex plane. Then, an observer-based controller is designed to ensure system admissible. Finally, numerical examples are given to reveal the validity of the theoretical conclusions.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050240
Author(s):  
Xiao-Wen Zhao ◽  
Guangsong Han ◽  
Qiang Lai ◽  
Dandan Yue

The multiconsensus problem of first-order multiagent systems with directed topologies is studied. A novel consensus problem is introduced in multiagent systems — multiconsensus. The states of multiple agents in each subnetwork asymptotically converge to an individual consistent value in the presence of information exchanges among subnetworks. Linear multiconsensus protocols are proposed to solve the multiconsensus problem, and the matrix corresponding to the protocol is designed. Necessary and sufficient conditions are derived based on matrix theory, under which the stationary multiconsensus and dynamic multiconsensus can be reached. Simulations are provided to demonstrate the effectiveness of the theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoyu Wang ◽  
Kaien Liu ◽  
Zhijian Ji ◽  
Shitao Han

In this paper, the bipartite consensus problem of heterogeneous multiagent systems composed of first-order and second-order agents is considered by utilizing the event-triggered control scheme. Under structurally balanced directed topology, event-triggered bipartite consensus protocol is put forward, and event-triggering functions consisting of measurement error and threshold are designed. To exclude Zeno behavior, an exponential function is introduced in the threshold. The bipartite consensus problem is transformed into the corresponding stability problem by means of gauge transformation and model transformation. By virtue of Lyapunov method, sufficient conditions for systems without input delay are obtained to guarantee bipartite consensus. Furthermore, for the case with input delay, sufficient conditions which include an admissible upper bound of the delay are obtained to guarantee bipartite consensus. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yuanhua Li ◽  
Heng Liu ◽  
Hongxing Wang

Stability and stabilization of fractional-order interval system is investigated. By adding parameters to linear matrix inequalities, necessary and sufficient conditions for stability and stabilization of the system are obtained. The results on stability check for uncertain FO-LTI systems with interval coefficients of dimensionnonly need to solve one 4n-by-4nLMI. Numerical examples are presented to shown the effectiveness of our results.


2014 ◽  
Vol 721 ◽  
pp. 269-272
Author(s):  
Fan Di Zhang

This paper propose fractional-order Lu complex system. Moreover, projective synchronization control of the fractional-order hyper-chaotic complex Lu system is studied based on feedback technique and the stability theorem of fractional-order systems, the scheme of anti-synchronization for the fractional-order hyper-chaotic complex Lu system is presented. Numerical simulations on examples are presented to show the effectiveness of the proposed control strategy.


Author(s):  
J Shen ◽  
J Cao ◽  
J Lu

This paper studies the consensus problems of fractional-order systems with non-uniform input and communication delays over directed static networks. Based on a frequency-domain approach and generalized Nyquist stability criterion, sufficient conditions are obtained to ensure the consensus of the fractional-order systems with simultaneously non-uniform input and communication delays. When the fractional-order [Formula: see text], it is found that the consensus condition is dependent on input delays but independent on communication delays. Surprisingly, when there is no input delay, consensus can be realized whatever the communication delays are. However, a counter-example shows that communication delays will have a great influence on the consensus condition when the fractional-order [Formula: see text]. Moreover, the bounds of input and communication delays are explicitly given to guarantee the consensus of the delayed fractional-order systems with fractional-order [Formula: see text] under an undirected interaction graph.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hongjuan Liu ◽  
Zhiliang Zhu ◽  
Hai Yu ◽  
Qian Zhu

A new general and systematic coupling scheme is developed to achieve the modified projective synchronization (MPS) of different fractional-order systems under parameter mismatch via the Open-Plus-Closed-Loop (OPCL) control. Based on the stability theorem of linear fractional-order systems, some sufficient conditions for MPS are proposed. Two groups of numerical simulations on the incommensurate fraction-order system and commensurate fraction-order system are presented to justify the theoretical analysis. Due to the unpredictability of the scale factors and the use of fractional-order systems, the chaotic data from the MPS is selected to encrypt a plain image to obtain higher security. Simulation results show that our method is efficient with a large key space, high sensitivity to encryption keys, resistance to attack of differential attacks, and statistical analysis.


Sign in / Sign up

Export Citation Format

Share Document