scholarly journals Processing of Aluminium-Silicon Alloy with Metal Carbide as Reinforcement through Powder-Based Additive Manufacturing: A Critical Study

Scanning ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
R. Raj Mohan ◽  
R. Venkatraman ◽  
S. Raghuraman ◽  
P. Manoj Kumar ◽  
Moti Lal Rinawa ◽  
...  

Powder-based additive manufacturing (PAM) is a potential fabrication approach in advancing state-of-the-art research to produce intricate components with high precision and accuracy in near-net form. In PAM, the raw materials are used in powder form, deposited on the surface layer by layer, and fused to produce the final product. PAM composite fabrication for biomedical implants, aircraft structure panels, and automotive brake rotary components is gaining popularity. In PAM composite fabrication, the aluminium cast alloy is widely preferred as a metal matrix for its unique properties, and different reinforcements are employed in the form of oxides, carbides, and nitrides. However, for enhancing the mechanical properties, the carbide form is predominantly considered. This comprehensive study focuses on contemporary research and reveals the effect of metal carbide’s (MCs) addition to the aluminium matrix processed through various PAM processes, challenges involved, and potential scopes to advance the research.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 293
Author(s):  
Shijie Jiang ◽  
Ke Hu ◽  
Yang Zhan ◽  
Chunyu Zhao ◽  
Xiaopeng Li

Material extrusion (ME), one of the most widely used additive manufacturing technique, has the advantages of freedom of design, wide range of raw materials, strong ability to manufacture complex products, etc. However, ME products have obvious surface defects due to the layer-by-layer manufacturing characteristics. To reveal the generation mechanism, the three-dimensional surface roughness (3DSR) of ME products was investigated theoretically and experimentally. Based on the forming process of bonding neck, the 3DSR theoretical model in two different directions (vertical and parallel to the fiber direction) was established respectively. The preparation of ME samples was then completed and a series of experimental tests were performed to determine their surface roughness with the laser microscope. Through the comparison between theoretical and experimental results, the proposed model was validated. In addition, sensitivity analysis is implemented onto the proposed model, investigating how layer thickness, extrusion temperature, and extrusion width influence the samples’ surface roughness. This study provides theoretical basis and technical insight into improving the surface quality of ME products.


2018 ◽  
Vol 941 ◽  
pp. 2137-2141 ◽  
Author(s):  
Kevin Hoefer ◽  
Peter Mayr

Additive manufacturing of titanium components offers several advantages compared to conventional production technologies such as higher material utilization efficiency and increased geometric possibilities. In comparison to laser powder bed processes, arc-based additive manufacturing processes have the additional advantage of an almost unlimited assembly space, higher deposition rates and an improved utilisation factor of raw materials. Disadvantages of wire-based methods are the restricted availability of different types of wire consumables, the fact that the wire feed rate is directly coupled to the heat input and the lack of possibility to create multi-material structures in-situ.Within this work, the 3D Plasma Metal Deposition (3DPMD) method, based on a plasma powder deposition process is introduced. 3DPMD has some special advantages compared to the established plasma powder process and other additive processes. For example, up to four powders, which can differ in terms of material and powder fraction, can be mixed within one layer. This allows a targeted adaption of local properties (microstructure, mechanical properties, wear resistance, porosity, etc.) to the targeted load type and level. The tailored introduction of reinforcement particles, e.g. tungsten or titanium carbides, into the component is a simple example.The study aims to demonstrate the suitability of the 3DPMD for the production of titanium components in layer-by-layer design. Various demonstrators are prepared and analysed. The microstructures, the porosity and the hardness values of the different structures are analysed.In summary, 3DPMD offers the possibility to produce titanium structures with and without reinforcement particles. Using automated routines, it is possible to generate metallic structures directly from the CAD drawings using welding robots. Microstructures and properties are directly related to the process and, therefore, structure-process-property relationships are discussed within this work.


2020 ◽  
Vol 7 (3) ◽  
pp. 103
Author(s):  
Erik Stenvall ◽  
Göran Flodberg ◽  
Henrik Pettersson ◽  
Kennet Hellberg ◽  
Liselotte Hermansson ◽  
...  

A custom-made prosthetic product is unique for each patient. Fossil-based thermoplastics are the dominant raw materials in both prosthetic and industrial applications; there is a general demand for reducing their use and replacing them with renewable, biobased materials. A transtibial prosthesis sets strict demands on mechanical strength, durability, reliability, etc., which depend on the biocomposite used and also the additive manufacturing (AM) process. The aim of this project was to develop systematic solutions for prosthetic products and services by combining biocomposites using forestry-based derivatives with AM techniques. Composite materials made of polypropylene (PP) reinforced with microfibrillated cellulose (MFC) were developed. The MFC contents (20, 30 and 40 wt%) were uniformly dispersed in the polymer PP matrix, and the MFC addition significantly enhanced the mechanical performance of the materials. With 30 wt% MFC, the tensile strength and Young´s modulus was about twice that of the PP when injection molding was performed. The composite material was successfully applied with an AM process, i.e., fused deposition modeling (FDM), and a transtibial prosthesis was created based on the end-user’s data. A clinical trial of the prosthesis was conducted with successful outcomes in terms of wearing experience, appearance (color), and acceptance towards the materials and the technique. Given the layer-by-layer nature of AM processes, structural and process optimizations are needed to maximize the reinforcement effects of MFC to eliminate variations in the binding area between adjacent layers and to improve the adhesion between layers.


3D Printing ◽  
2017 ◽  
pp. 145-152
Author(s):  
Tihomir Mitev

The additive manufacturing (or the popular 3D printing) is relatively new technology which opens new spaces for entrepreneurial imagination and promises next stage of the industrial revolution. It is creating three dimensional solid objects from a digital file. The printer transforms the file into a material object layer by layer, using different raw materials. Today, the additive manufacturing is successfully used in architecture, medicine and healthcare, light and heavy industries, education, etc. The paper analyses the roles of actors in manufacturing the objects. It starts with the Heideggerian questioning of technology (), searching for the causes of bringing into appearance of the 3D model. According to Heideggerian analysis the technology is represented as an ‘unveiling of the truth'. The paper suggests that the old understanding of matter as a thing-in-itself should be replaced by a new, flexible, fluid, concept of matter, which is more or less manipulable. The matter is no more an occasion for object's taking place. On the other hand, it seems 3D printing technology is reduced to mere means; a simple intermediary, a copier of ideas. From that perspective the paper questioning the problem of action in ANT and search how action and interaction is distributed and how actors constitutes themselves as well as their actor-world.


Author(s):  
Tihomir Mitev

The additive manufacturing (or the popular 3D printing) is relatively new technology which opens new spaces for entrepreneurial imagination and promises next stage of the industrial revolution. It is creating three dimensional solid objects from a digital file. The printer transforms the file into a material object layer by layer, using different raw materials. Today, the additive manufacturing is successfully used in architecture, medicine and healthcare, light and heavy industries, education, etc. The paper analyses the roles of actors in manufacturing the objects. It starts with the Heideggerian questioning of technology (), searching for the causes of bringing into appearance of the 3D model. According to Heideggerian analysis the technology is represented as an ‘unveiling of the truth'. The paper suggests that the old understanding of matter as a thing-in-itself should be replaced by a new, flexible, fluid, concept of matter, which is more or less manipulable. The matter is no more an occasion for object's taking place. On the other hand, it seems 3D printing technology is reduced to mere means; a simple intermediary, a copier of ideas. From that perspective the paper questioning the problem of action in ANT and search how action and interaction is distributed and how actors constitutes themselves as well as their actor-world.


Author(s):  
Devdas Shetty ◽  
Daniel Ly

Aerospace companies use high-strength metal alloys like Inconel or Titanium which could be very difficult to fabricate using conventional methods. The current manufacturing techniques result in significant waste. Additive Manufacturing (AM), in its current state is not sufficiently understood, nor characterized such that conventional design practices and process qualification methodologies can be used. In addition, AM cannot be considered for the manufacture of aircraft components unless the process is stable and controlled. The mechanical properties of fabricated parts require to be characterized to demonstrate their invariability. The laser deposition using complex geometries is a challenge. In addition, the structural performances of AM parts have to be proved. Inherent in these requirements is the need to develop a process specification which requires the monitoring and control of key raw materials, consumables, and process parameters; the development of a fixed practice for each of the AM process. Several procedures are required in order to understand how additive manufacturing works using advanced and complex design models. The ability to adopt AM to the production of components is not only predicated on the ability of AM to be competitive with conventional manufacturing methods in terms of cost, but also on its ability to deliver parts with repeatable mechanical performance. The objective of this paper is to define and characterize the limitation of various complex geometries using additive manufacturing. The experimental research involved the creation of a number of specimens using direct metal laser sintering process, examination of their form features, documenting DMLS geometry limits for the form features and finally the creation of calibration models that can be used in aerospace design manuals.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Author(s):  
F. Pixner ◽  
R. Buzolin ◽  
S. Schönfelder ◽  
D. Theuermann ◽  
F. Warchomicka ◽  
...  

AbstractThe complex thermal cycles and temperature distributions observed in additive manufacturing (AM) are of particular interest as these define the microstructure and the associated properties of the part being built. Due to the intrinsic, layer-by-layer material stacking performed, contact methods to measure temperature are not suitable, and contactless methods need to be considered. Contactless infrared irradiation techniques were applied by carrying out thermal imaging and point measurement methods using pyrometers to determine the spatial and temporal temperature distribution in wire-based electron beam AM. Due to the vacuum, additional challenges such as element evaporation must be overcome and additional shielding measures were taken to avoid interference with the contactless techniques. The emissivities were calibrated by thermocouple readings and geometric boundary conditions. Thermal cycles and temperature profiles were recorded during deposition; the temperature gradients are described and the associated temperature transients are derived. In the temperature range of the α+β field, the cooling rates fall within the range of 180 to 350 °C/s, and the microstructural characterisation indicates an associated expected transformation of β→α'+α with corresponding cooling rates. Fine acicular α and α’ formed and local misorientation was observed within α as a result of the temperature gradient and the formation of the α’.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Bin Chen ◽  
Peng Chen ◽  
Yongjun Huang ◽  
Xiangxi Xu ◽  
Yibo Liu ◽  
...  

Abstract Diamond tools with orderly arrangements of diamond grits have drawn considerable attention in the machining field owing to their outstanding advantages of high sharpness and long service life. This diamond super tool, as well as the manufacturing equipment, has been unavailable to Chinese enterprises for a long time due to patents. In this paper, a diamond blade segment with a 3D lattice of diamond grits was additively manufactured using a new type of cold pressing equipment (AME100). The equipment, designed with a rotary working platform and 16 molding stations, can be used to additively manufacture segments with diamond grits arranged in an orderly fashion, layer by layer; under this additive manufacturing process, at least 216000 pcs of diamond green segments with five orderly arranged grit layers can be produced per month. The microstructure of the segment was observed via SEM and the diamond blade fabricated using these segments was compared to other commercial cutting tools. The experimental results showed that the 3D lattice of diamond grits was formed in the green segment. The filling rate of diamond grits in the lattice could be guaranteed to be above 95%; this is much higher than the 90% filling rate of the automatic array system (ARIX). When used to cut stone, the cutting amount of the blade with segments made by AME100 is two times that of ordinary tools, with the same diamond concentration. When used to dry cut reinforced concrete, its cutting speed is 10% faster than that of ARIX. Under wet cutting conditions, its service life is twice that of ARIX. By applying the machine vision online inspection system and a special needle jig with a negative pressure system, this study developed a piece of additive manufacturing equipment for efficiently fabricating blade segments with a 3D lattice of diamond grits.


Sign in / Sign up

Export Citation Format

Share Document