scholarly journals Automobile Industry under China’s Carbon Peaking and Carbon Neutrality Goals: Challenges, Opportunities, and Coping Strategies

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Fuquan Zhao ◽  
Xinglong Liu ◽  
Haoyi Zhang ◽  
Zongwei Liu

China has already committed to peaking carbon dioxide emissions by 2030 and achieving carbon neutrality by 2060 (referred to as the 30·60 Target), which has brought both daunting challenges and great opportunities to the automobile industry in China. However, there is still a lack of comprehensive and in-depth studies on the challenges, paths, and strategies for reducing carbon emissions to fulfill the 30·60 Target in automobile industries. Therefore, this paper proposes low-carbon development strategies for China’s automobile industry. This study’s method is to integrate the results from different literature to summarize the status, challenges, opportunities, and refine the coping strategies for carbon emission of the automobile industry. The results indicated that the paths for achieving the 30·60 Target include joint carbon emission reduction by upstream and downstream enterprises inside the industry. It also needs cross-industry and cross-sector coordinated decarbonization outside the industry. Meanwhile, the low-carbon policy and regulation system should be established to provide a direct driving force and fundamental guarantee for the low-carbon development of China’s automobile industry.

2020 ◽  
Vol 9 (1) ◽  
pp. 242-252

Reducing carbon dioxide emissions through low carbon development is an appropriate solution to combating climate change. This research aims to identify ways of reducing carbon dioxide emissions in Johor Bahru towards promoting low carbon development. The research investigated the low carbon initiatives in Malaysia. The study was based on purposive case study and restricted to Johor Bahru, Malaysia. It reviewed existing practice of low carbon development in the study area. Stakeholders and organizations related to low carbon development and low carbon initiatives were interviewed. The study also observed that the initiative is relatively in the early stage with few projects accomplished. However, emphasis was placed on other themes of low carbon concept rather than direct measurement of Carbon dioxide (CO2) emission. Since majority carbon emissions are from electricity and transport sectors, the Malaysian University Carbon Emission Tool (MUCET) was modified and suggested for measuring and monitoring emissions in Johor Bahru. This study facilitates the formulation of policies that target emission reduction and ensure steady movement into clean energy future.


2022 ◽  
Vol 1 (15) ◽  
pp. 71-75
Author(s):  
Dmitriy Kononov

The strategy of low-carbon development of the economy and energy of Russia provides for the introduction of a fee (tax) for carbon dioxide emissions by power plants. This will seriously affect their prospective structure and lead to an increase in electricity prices. The expected neg-ative consequences for national and energy security are great. But serious and multilateral research is needed to properly assess these strategic threats


2020 ◽  
Vol 08 (01) ◽  
pp. 2050004
Author(s):  
Xingmin WANG ◽  
Jing WU ◽  
Zheng WANG ◽  
Xiaoting JIA ◽  
Bing BAI

Accurate estimation of CO2 emissions is a prerequisite for scientific low-carbon emission policymaking. Based on 20 types of energy consumption data at the prefecture level in China, this paper re-estimates the CO2 emissions of 198 prefecture-level cities in 2016 by using the method of carbon emission coefficient. The spatial pattern and scale characteristics are analyzed, and the conclusions are as follows: (1) Overall, China’s urban CO2 emissions show a certain degree of spatial separation in terms of the total amount, per capita emissions, and emission intensity. Cities with the highest CO2 emissions in China are mainly concentrated in North China, East China and Chongqing, while cities with the highest per capita CO2 emissions and emission intensity are mainly concentrated in Northwest and North China. (2) Different types of cities have different CO2 emission characteristics. Resource-based cities have a higher total amount and emission intensity; tourism and underdeveloped cities both have lower values; while super-large-sized cities and many very-large-sized cities have higher CO2 emissions, but their emission intensities are usually lower; and no obvious rules are found in other cities. (3) Spatial analysis shows that cities with higher CO2 emissions are clustered. The Beijing–Tianjin–Hebei region, the Yangtze River Delta region, Shandong Province, and Shanxi–Henan–Anhui resource-producing areas are the agglomeration areas of high-emission cities. (4) Scale analysis shows that the characteristics of CO2 emissions at different scales are different. Provincial-level research can help to identify the environmental impact and total effect of carbon emissions, while urban-scale research is helpful to explore the diversity and phases of cities. Finally, based on the main conclusions of this study, the corresponding urban low-carbon policy implications are drawn.


2021 ◽  
Author(s):  
Yining Wang ◽  
Wei Rong

In September 22, 2020, Xi Jinping said at the seventy-fifth general debate of the UN General Assembly that China will enhance the national independent contribution, and strive to achieve the peak of carbon dioxide emissions by 2030, and strive to achieve carbon neutralization by 2060. Under the goal of carbon peak and carbon neutralization, the implementation of carbon emission reduction is an important strategy for China to achieve green and low-carbon development, but also faces major challenges “The Fourteenth Five Year Plan” Period is an important window period for scientific and technological innovation to realize the transformation of carbon dioxide emission growth rate. Only with the support of scientific and technological innovation can China be expected to achieve the goal of carbon peak and carbon neutralization on schedule. This paper attempts to study how to innovate the energy undergraduate talent training mode under the goal of “carbon neutral” from the aspects of the current situation of talent training, the analysis of talent training objectives, and the path analysis of talent training mode innovation.


2021 ◽  
Vol 308 ◽  
pp. 01021
Author(s):  
Qirong Huang

“Carbon Neutrality” means that enterprises, groups, or individuals calculate the total amount of greenhouse gas emissions produced directly or indirectly within a certain period and offset their Carbon dioxide emissions through afforestation, energy conservation, and emission reduction to achieve zero carbon dioxide emissions. Since 2020, the commitment to Carbon Neutrality has been paid attention to by various industries. Particularly, in the car industry, “Carbon Neutrality” has almost become one of the hottest directions. This paper focuses on policymaking and its impact on the automotive industry in the context of carbon neutrality. It is concluded that Carbon Neutrality is a problem that automobile enterprises must face. Automobile enterprises should set targets and time nodes related to Carbon Neutrality as soon as possible and speed up implementing specific measures. In addition, electric and new energy vehicles are more conducive to carbon emissions and carbon neutral transportation. Its development should also be put on the agenda.


Sign in / Sign up

Export Citation Format

Share Document